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Optimization-based algorithms are the foundation for empirically successful meth-

ods in modern fields, such as artificial intelligence and data science. Although classi-

cal optimization theory provides guarantees for functions with smoothness or convex-

ity, a significant portion of modern problems do not possess any of these. Despite the

worst-case examples where efficient algorithms are unavailable, typical nonsmoothness

arises with a “partly smooth” structure, meaning that they are well-behaved relative to a

smooth “active manifold.”

This thesis develops and analyzes first-order algorithms based on the aforementioned

nonsmooth structure. We first develop two regularity conditions describing how sub-

gradients interact with active manifolds and then show that they hold for a broad and

generic class of functions. With these cornerstones, we demonstrate that when ran-

domly perturbed or equipped with stochastic noise, subgradient methods only converge

to minimizers of generic, Clarke regular semialgebraic problems. When convergence

to a certain minimizer is known, we demonstrate that stochastic (projected) subgradient

methods have asymptotic normality, making them asymptotically optimal algorithms in

the locally minimax sense of Hájek and Le Cam.

These findings culminate with a new first-order algorithm—NTDescent—which ex-

hibits local nearly linear convergence on typical nonsmooth functions with quadratic

growth. The convergence rate of NTDescent depends only on the function’s intrinsic

quantities but not the problem’s underlying dimension.
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CHAPTER 1

INTRODUCTION

Optimization-based algorithms are the foundation for empirically successful meth-

ods in modern fields, such as artificial intelligence and data science. Although classical

optimization theory provides guarantees for functions with smoothness or convexity,

modern problems often do not possess either of these characteristics. For example,

industry-backed solvers, such as TensorFlow and PyTorch, now routinely train non-

smooth and nonconvex deep networks for modern machine learning problems using

(stochastic) first-order methods. The widespread empirical success of these methods

underscores the need for a better understanding of nonsmooth and nonconvex optimiza-

tion.

While nonsmooth functions such as the Cantor function and Weierstrass function

can be pathological, it is rare to see such behavior in practice. For example [1–7], many

nonsmooth and nonconvex functions are “partly smooth”, which entails the existence of

a smooth “active manifold” containing the critical point of the function along which the

function is smooth, and off of which the function grows sharply. Partial smoothness en-

sures that the nonsmooth objective functions are well-behaved near their critical points

and enables us to extend results from classical smooth optimization theory to nonsmooth

settings.

Equipped with the “partial smoothness” structure, we study three fundamental as-

pects of nonsmooth optimization: avoiding saddle points, asymptotically optimal al-

gorithms, and fast local convergence. In the smooth setting, these aspects are already

well-understood:
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• Randomly initialized gradient descent almost always escapes strict saddle

points [8, 9]. Consequently, gradient descent provably converges to local mini-

mizers for typical smooth objective functions satisfying the strict saddle property,

meaning each critical point is either a local minimizer or a strict saddle point (e.g.,

[10–14]).

• The running average of stochastic gradient descent sequence exhibits asymptotical

normality [15] with optimal covariance matrix [16], and thus stochastic gradient

descent with averaging is an asymptotically optimal algorithm in the locally min-

imax sense of Hájek and Le Cam [17, 18];

• Gradient descent with constant stepsize converges linearly when initialized near

a minimizer with positive definite Hessian [19]. As a result, one only needs

C log(1/ε) iterations to achieve a function gap of size ε. Here, C depends on

the condition number of the objective function but not the problem’s underlying

dimension.

These three results rely on a crucial fact about smooth functions: they can be well

approximated by their first or second-order Taylor expansion. Consequently, linear dy-

namical systems can approximate and help us understand gradient descent dynamics.

However, this type of argument breaks down for nonsmooth problems because, even

with convexity, nonsmooth functions can only be approximated by their local lineariza-

tion from below. Therefore, the lack of Taylor approximation presents a challenge in

generalizing the above results to subgradient-based first-order methods.

This thesis addresses this challenge by developing and analyzing new techniques

and algorithms for nonsmooth optimization problems. We note that if a function ad-

mits an active manifold, its restriction onto this active manifold is smooth. Therefore,

a high-level idealized algorithmic idea is first to identify the active manifold and then
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study the smooth dynamics of iterative methods along the manifold, thereby generaliz-

ing classical results in smooth optimization to nonsmooth problems. While appealing,

the smooth dynamics are not available in practice because subgradient-based algorithms

do not identify the active manifold. Instead, they oscillate around the active manifold

indefinitely. Nevertheless, the key insight of this thesis is that one may still deduce fa-

vorable properties of nonsmooth optimization algorithms by connecting the behavior of

functions on and off the active manifold. We now describe our main contributions.

• In Chapter 3, we introduce four compatibility conditions between two sets, which

generalizes classical stratification theory by Whitney [20–22], Kuo [23], and

Verdier [24]. We then apply these compatibility conditions to the epigraphs and

active manifolds of partly smooth functions and derive regularity conditions that

quantify how subgradients interact with active manifolds.

Out of the four regularity conditions, the (b) and strong-(a) regularity conditions are

cornerstones for the new analysis and algorithms in the following chapters. They en-

able us to link iterations with their projections onto the active manifolds, leading to the

following algorithmic consequences:

• In Chapter 4, we generalize saddle point avoidance results for gradient descent in

smooth optimization to nonsmooth optimization. We show that the stochastic or

randomly perturbed subgradient method almost always escapes the strict saddle

point. As a consequence, the iterates only converge to minimizers of weakly

convex “typical functions,” which are built from concrete structured examples or

unstructured linear perturbations;

• In Chapter 5, we extend the classical asymptotic normality result for stochas-

tic smooth optimization by Polyak and Juditsky [15] to stochastic nons-
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mooth/constrained optimization. We prove that the “simplest” online first-order

method – stochastic (projected) subgradient method has asymptotic normality

with the optimal covariance matrix, and hence it is an asymptotically optimal

algorithm in the locally minimax sense of Hájek and Le Cam [17, 18];

• In Chapter 6, we present a first-order method for a broad class of nonsmooth

functions with quadratic growth. The algorithm is parameter-free and locally

converges nearly linearly, meaning that to achieve a function gap of size ε, one

needs at most C log3(1/ε) first-order oracle evaluations. Here, C depends on the

objective function’s intrinsic quantities but not the problem’s underlying dimen-

sion. Moreover, the algorithm’s memory cost and per-iteration complexity have

the same order as the standard subgradient method.

Our presentation assumes a certain familiarity with nonsmooth analysis and differ-

ential geometry. For convenience, we have compiled most of the necessary notation and

background in Chapter 2.

This thesis is based on the following research projects:

• Chapter 3 and 4 are based on joint work with Damek Davis and Dmitriy Drusvy-

atskiy [25].

• Chapter 5 is based on joint work with Damek Davis and Dmitriy Drusvy-

atskiy [26].

• Chapter 6 is based on joint work with Damek Davis [27].
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CHAPTER 2

PRELIMINARIES

2.1 Notation

Throughout, we let E and Y denote Euclidean spaces with inner products denoted by

⟨·, ·⟩ and the induced norm ∥x∥ =
√
⟨x, x⟩. The symbol B will stand for the closed unit

ball in E, while Br(x) will denote the closed ball of radius r around a point x. The

closure of any set Q ⊂ E will be denoted by cl Q, while its convex hull will be denoted

by conv Q. The relative interior of a convex set Q will be written as ri Q. The lineality

space of any convex cone is the linear subspace lin(Q) := Q ∩ −Q.

For any function f : E→ R∪ {+∞}, the domain, graph, and epigraph are defined as

dom f := {x ∈ E : f (x) < ∞},

gph f := {(x, f (x)) ∈ E × R : x ∈ dom f },

epi f := {(x, r) ∈ E × R : r ≥ f (x)},

respectively. We say that f is closed if epi f is a closed set, or equivalently if f is lower-

semicontinuous at every point in its domain. IfM is some subset of E, the symbol f |
M

denotes the restriction of f toM and we set gph f |
M

:= (gph f ) ∩ (M× R). We call a

function h : Rd → R sublinear if its epigraph is a closed convex cone, and in that case

we define

lin(h) := {x ∈ Rd : h(x) = −h(−x)}

to be its lineality space. The graph of h restricted to lin(h) is precisely the lineality space

of epi h.
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Given a mapping F : Rd → Rm and a point x̄ ∈ Rd, we define

lipF(x̄) := lim sup
x,x′→x̄

x,x′

∥F(x) − F(x′)∥
∥x − x′∥

.

Given a mapping F : Rd → Rm×n into the space of m × n matrices and a point x ∈ Rd

then we define

lipop
F (x̄) := lim sup

x,x′→x̄
x,x′

∥F(x) − F(x′)∥op

∥x − x′∥
,

where ∥ · ∥op denotes the operator norm defined on Rm×n.

The distance and the projection of a point x ∈ E onto a set Q ⊂ E are

d(x,Q) := inf
y∈Q
∥y − x∥ and PQ(x) := argmin

y∈Q
∥y − x∥,

respectively. Note that the function dist(·,X) is 1-Lipschitz for any set X. For any set

X ⊆ Rd, all x̄ ∈ X, all x ∈ Rd, and all y ∈ PX(x), we have

∥y − x̄∥ ≤ 2∥x − x̄∥.

We denote the diameter of a set X by

diam(X) = sup
x,y∈X
∥x − y∥.

The indicator function of a set Q, denoted by δQ : E→ R∪ {∞}, is defined to be zero on

Q and +∞ off it. The gap between any two closed cones U,V ⊂ E is defined as

∆(U,V) := sup{dist(u,V) : u ∈ U, ∥u∥ = 1}.

2.2 Nonsmooth analysis

Nonsmooth functions will play a central role in this thesis. We follow standard termi-

nology and notation of nonsmooth and variational analysis, following mostly closely

the monograph of Rockafellar-Wets [28]. Other influential treatments of the subject

include [29–32].
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Normal cones and Clarke regularity The symbol “o(h) as h → 0” stands for any

univariate function o(·) satisfying o(h)/h → 0 as h ↘ 0. The Fréchet normal cone to a

set Q ⊂ E at a point x ∈ E, denoted N̂Q(x), consists of all vectors v ∈ E satisfying

⟨v, y − x⟩ ≤ o(∥y − x∥) as y→ x in Q. (2.2.1)

The limiting normal cone to Q at x ∈ Q, denoted by NQ(x), consists of all vectors v ∈ E

for which there exist sequences xi ∈ Q and vi ∈ N̂Q(xi) satisfying (xi, vi) → (x, v).

The Clarke normal cone is the closed convex hull Nc
Q(x) = cl conv NQ(x). Thus the

inclusions

N̂Q(x) ⊂ NQ(x) ⊂ Nc
Q(x), (2.2.2)

hold for all x ∈ Q. The set Q is called Clarke regular at x̄ ∈ Q if Q is locally closed

around x̄ and equality Nc
Q(x̄) = N̂Q(x̄) holds. In this case, all inclusions in (2.2.2) hold

as equalities.

Prox-regularity. A particularly large class of Clarke regular sets consists of those

called prox-regular. Following [33,34], a locally closed set Q ⊂ E is called prox-regular

at x̄ ∈ Q if the projection PQ(x) is a singleton set for all points x near x̄. Equivalently [33,

Theorem 1.3], a locally closed set Q is prox-regular at x̄ ∈ Q if and only if there exist

constants ϵ, ρ > 0 satisfying

⟨v, y − x⟩ ≤
ρ

2
∥y − x∥2,

for all y, x ∈ Q ∩ Bϵ(x̄) and all normal vectors v ∈ NQ(x) ∩ ϵB. If Q is prox-regular

at x̄, then the projection PQ(·) is automatically locally Lipschitz continuous around x̄

[33, Theorem 1.3]. Common examples of prox-regular sets are convex sets and C2

manifolds, as well as sets cut out by finitely many C2 inequalities under transversality

conditions [35]. Prox-regular sets are closely related to proximally smooth sets [34] and

sets with positive reach [36].
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Subdifferentials. Generalized gradients of functions can be defined through the nor-

mal cones to epigraphs. Namely, consider a function f : E → R ∪ {∞} and a point

x ∈ dom f . The Fréchet, limiting, and Clarke subdifferentials of f at x are defined,

respectively, as

∂̂ f (x) := {v ∈ E : (v,−1) ∈ N̂epi f (x, f (x))},

∂ f (x) := {v ∈ E : (v,−1) ∈ Nepi f (x, f (x))},

∂c f (x) := {v ∈ E : (v,−1) ∈ Nc
epi f (x, f (x))}.

(2.2.3)

Explicitly, the inclusion v ∈ ∂̂ f (x) amounts to requiring the lower-approximation prop-

erty:

f (y) ≥ f (x) + ⟨v, y − x⟩ + o(∥y − x∥) as y→ x.

Moreover, a vector v lies in ∂ f (x) if and only if there exist sequences xi ∈ E and Fréchet

subgradients vi ∈ ∂̂ f (xi) satisfying (xi, f (xi), vi) → (x, f (x), v) as i → ∞. If f is locally

Lipschitz continuous around x, then equality ∂c f (x) = conv ∂ f (x) holds. A point x̄

satisfying 0 ∈ ∂ f (x) is called critical for f , while a point satisfying 0 ∈ ∂c f (x) is called

Clarke critical. The distinction disappears for subdifferentially regular functions. We

say that f is subdifferentially regular at x ∈ dom f if the epigraph of f is Clarke regular

at (x, f (x)).

The three subdifferentials defined in (2.2.3) fail to capture the horizontal normals to

the epigraph—meaning those of the form (v, 0). Such horizontal normals play an im-

portant role in variational analysis, particularly for developing subdifferential calculus

rules. Consequently, we define the limiting and Clarke horizon subdifferentials, respec-

tively, by:

∂∞ f (x) := {v ∈ E : (v, 0) ∈ Nepi f (x, f (x))},

∂∞c f (x) := {v ∈ E : (v, 0) ∈ Nc
epi f (x, f (x))}.

(2.2.4)
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Weak convexity. A function f : E→ R∪{∞} is called ρ-weakly convex if the quadrat-

ically perturbed function x 7→ f (x) + ρ

2∥x∥
2 is convex. Weakly convex functions are

subdifferentially regular. Indeed, the subgradients of a ρ-weakly convex function yield

quadratic minorants, meaning

f (y) ≥ f (x) + ⟨v, y − x⟩ −
ρ

2
∥y − x∥2

all points x, y ∈ dom f and all subgradients v ∈ ∂ f (x). The epigraph of any weakly

convex function is a prox-regular set at each point. A primary example of weakly convex

functions consists of compositions of Lipschitz convex functions with smooth maps

[37, 38].

Semialgebraicity. We call a set X ⊆ Rd semialgebraic if it is the union of finitely

many sets defined by finitely many polynomial inequalities. Likewise, we call a function

f : Rd → R semialgebraic if its graph gph ( f ) = {(x, f (x)) : x ∈ Rd} is semialgebraic.

2.3 Differential geometry

In this section, we introduce basic definitions and properties of manifolds.

Manifolds. We next set forth some basic notation when dealing with smooth embed-

ded submanifolds of E. Throughout the thesis, all smooth manifoldsM are assumed to

be embedded in E and we consider the tangent and normal spaces toM as subspaces of

E. Thus, a setM ⊂ E is a Cp manifold (with p ≥ 1) if around any point x ∈ M there

exists an open neighborhood U ⊂ E and a Cp-smooth map F from U to some Euclidean

space Y such that the Jacobian ∇F(x) is surjective and equalityM ∩U = F−1(0) holds.

Then the tangent and normal spaces toM at x are simply TM (x) := Null (∇F(x)) and
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NM (x) := (TM (x))⊥, respectively. Note that for Cp manifoldsM with p ≥ 1, the projec-

tion PM is Cp−1-smooth on a neighborhood of each point x inM, and is Cp smooth on

the tangent space TM (x) [39]. Moreover, the inclusion range(∇PM(x)) ⊆ TM(x) holds

for all x nearM and the equality ∇PM(x) = PTM(x) holds for all x ∈ M.

Covariant gradient and Hessian. Let M ⊂ E be a Cp-manifold for some p ≥ 1.

Then a function f : M → R is called Cp-smooth around a point x ∈ M if there exists

a Cp function f̂ : U → R defined on an open neighborhood U of x and that agrees

with f on U ∩ M . Then the covariant gradient of f at x is defined to be the vector

∇M f (x) := PTM (x)(∇ f̂ (x)). When f andM are C2-smooth, the covariant Hessian of f

at x is defined to be the unique self-adjoint bilinear form ∇2
M

f (x) : TM (x)×TM (x)→ R

satisfying

⟨∇2
M

f (x)u, u⟩ =
d2

dt2 f (PM (x + tu)) |t=0 for all u ∈ TM (x).

IfM is C3-smooth, then we can identify ∇2
M

f (x) with the matrix PTM(x)∇
2 f̂ (x)PTM(x).

2.4 Active manifolds and active strict saddles

Critical points of typical nonsmooth functions lie on a certain manifold that captures the

activity of the problem in the sense that critical points of slight linear tilts of the function

do not leave the manifold. Such active manifolds have been modeled in a variety of

ways, including identifiable surfaces [1], partial smoothness [2], UV-structures [3, 4],

g ◦ F decomposable functions [5], and minimal identifiable sets [6].

In this thesis, we adopt the following formal model of activity, explicitly used in [6],

where the only difference is that we focus on the Clarke subdifferential instead of the

limiting one.
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Definition 2.4.1 (Active manifold). Consider a function f : E → R ∪ {∞} and fix a

set M ⊆ E containing a point x̄ satisfying 0 ∈ ∂c f (x̄). Then M is called an active

Cp-manifold around x̄ if there exists a constant ϵ > 0 satisfying the following.

• (smoothness) The setM is a Cp-smooth manifold near x̄ and the restriction of f

toM is Cp-smooth near x̄.

• (sharpness) The lower bound holds:

inf{∥v∥ : v ∈ ∂c f (x), x ∈ U \M} > 0,

where we set U = {x ∈ Bϵ(x̄) : | f (x) − f (x̄)| < ϵ}.

The sharpness condition simply means that the subgradients of f must be uniformly

bounded away from zero at points off the manifold that are sufficiently close to x̄ in

distance and in function value. The localization in function value can be omitted for

example if f is weakly convex or if f is continuous on its domain; see [6] for details.

Two examples of the active manifold can be found in Figure 2.1, where we have a

saddle point for f1 and a minimizer for f2. More examples can be found in Chapter 3.

(a) The function f1(x, y) = |x| − y2 (b) The function f2(x, y) = |x| + y2

Figure 2.1: The y-axis is an active manifold for both functions.

Intuitively, the active manifold has the distinctive feature that the function grows
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linearly in normal directions to the manifold; see Figure 4.1a for an illustration. This is

summarized by the following theorem from [40, Theorem D.2].

Proposition 2.4.2 (Identification implies sharpness). Suppose that a closed function

f : E → R ∪ {∞} admits an active manifoldM at a point x̄ satisfying 0 ∈ ∂̂ f (x̄). Then

there exist constants c, ϵ > 0 such that

f (x) − f (PM(x)) ≥ c · dist(x,M), ∀x ∈ Bϵ(x̄). (2.4.1)

Notice that there is a nontrivial assumption 0 ∈ ∂̂ f (x̄) at play in Proposition 2.4.2.

Indeed, under the weaker inclusion 0 ∈ ∂c f (x̄) the growth condition (2.4.1) may easily

fail, as the univariate example f (x) = −|x| shows. It is worthwhile to note that under

the assumption 0 ∈ ∂̂ f (x̄), the active manifold is locally unique around x̄ [6, Proposi-

tion 8.2].

Active manifolds are useful because they allow to reduce many questions about non-

smooth functions to a smooth setting. In particular, the notion of a strict saddle point of

smooth functions naturally extends to a nonsmooth setting. The following definition is

taken from [41]. See Figure 4.1 for an illustration.

Definition 2.4.3 (Active strict saddle). Fix an integer p ≥ 2 and consider a closed func-

tion f : E → R ∪ {∞} and a point x̄ satisfying 0 ∈ ∂c f (x̄). We say that x̄ is a Cp strict

active saddle point of f if f admits a Cp active manifoldM at x̄ such that the inequality

⟨∇2
M

f (x̄)u, u⟩ < 0 holds for some u ∈ TM(x̄).

It is often convenient to think about active manifolds of slightly tilted functions.

Therefore, we say thatM is an active Cp manifold of f at x̄ for v ∈ ∂c f (x̄) ifM is an

active Cp manifold for the tilted function x 7→ f (x) − ⟨v, x⟩ at x̄. Active manifolds for

sets are defined through their indicator functions. Namely a set M ⊂ Q is an active
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Cp manifold of Q at x̄ ∈ Q for v ∈ Nc
Q(x̄) if it is an active Cp manifold of the indicator

function δQ at x̄ for v.
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CHAPTER 3

THE FOUR FUNDAMENTAL REGULARITY CONDITIONS

This chapter introduces compatibility conditions between two sets, motivated by the

works of Whitney [20–22], Kuo [23], and Verdier [24]. Our discussion builds on the

recent survey of Trotman [42]. We illustrate the definitions with examples and prove

basic relations between them. It is important to note that these classical works focused

on compatibility conditions between smooth manifolds, wherein primal (tangent) and

dual (normal) based characterizations are equivalent. In contrast, it will be more expe-

dient to base definitions on normal vectors instead of tangents. The reason is that when

applied to epigraphs, such conditions naturally imply some regularity properties for the

subgradients, which underpin all algorithmic consequences in this thesis.

3.1 Definitions and basic properties

Throughout this section, we fix two sets X and Y and a point x̄ ∈ Y. The reader should

keep in mind the most important setting when Y is a smooth manifold contained in the

closure of X. The phenomena we study are naturally one-sided, and therefore we will

deal with variational conditions that differ only in the choice of the orientation of the

inequalities. With this in mind, in order to simplify notation, we let ⋄ stand for any of

the symbols in {≤,=,≥}. We begin with the extensions of the two classical conditions of

Whitney [21, 22].

Definition 3.1.1 (Whitney conditions). Fix two sets X,Y ⊂ E.

1. We say that X is (a)-regular along Y if for any sequence xi ∈ X converging to a

point y ∈ Y and any sequence of normals vi ∈ NX(xi), every limit point of vi lies

in NY(y).
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2. We say that X is (b≤)-regular along Y if the estimate

⟨v, y − x⟩ ≤ o(∥y − x∥) (3.1.1)

holds for all x ∈ X, y ∈ Y, and all v ∈ NX(x) ∩ B. Properties (b≥) and (b=) are de-

fined analogously with the inequality in (3.1.1) replaced by ≥ and =, respectively.

More generally, we say that X is regular along Y near a point x̄ ∈ Y, in any of the

above senses, if there exists a neighborhood U of x̄ such that X ∩ U is regular along

Y ∩ U.

Both conditions (a) and (b⋄) are geometrically transparent. Condition (a) simply

asserts that “limits of normals to X are normal to Y”—clearly a desirable property.

Figure 3.1a illustrates how condition (a) may fail using the classical example of the

Cartan umbrella X = {(x, y, z) : z(x2 + y2) = x3}, which is not (a)-regular along the

z-axis near the origin. Explicitly, condition (b≤) means that for any sequences xi ∈ X

and yi ∈ Y converging to the same point, the condition

lim sup
i→∞

〈
vi,

yi − xi

∥yi − xi∥

〉
≤ 0,

holds, where vi ∈ NX(xi) are arbitrary unit normal vectors. That is, the angle between

the rays spanned by xi−yi and any normal vector vi ∈ NX(xi) becomes obtuse in the limit

as xi ∈ X and yi ∈ Y tend to the same point. Conditions (b=) and (b≥) have analogous

interpretations, with the word obtuse replaced by acute and ninety degrees, respectively.

Note that when X is a smooth manifold, the normal cone NX(x) is a linear subspace,

and therefore all three versions of property (b⋄) are equivalent. On the other hand, a

prox-regular set X is (b≤)-regular along any subset Y. Moreover, semismooth sets X in

the sense of [43, 44] are (b=)-regular along any singleton set Y := {x̄} contained in X.

We will use the following simple lemma frequently. It states that whenever Y is
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(a) x3 = z(x2 + y2) (b) y2 = x2z2 − z3

Figure 3.1: Illustrations of conditions (a) and (b).

contained in X, condition (a) simply amounts to the inclusion of normal cones, NX(x̄) ⊆

NY(x̄).

Lemma 3.1.1 (Inclusion of normal cones). Consider two sets Y ⊆ X ⊆ E. Then X is

(a)-regular along Y at x̄ if and only if the inclusion NX(y) ⊆ NY(y) holds for all y ∈ Y.

Proof. Suppose first that the inclusion NX(y) ⊆ NY(y) holds for all y ∈ Y. Consider a

sequence xi
X
→ y and vectors vi ∈ NX(xi) converging to some vector v. Then we deduce

v ∈ NX(y) ⊆ NY(y), as claimed. Conversely, suppose that X is (a)-regular alongY. Note

that the inclusion N̂X(y) ⊂ N̂Y(y) holds trivially for any y ∈ Y. For any vector v ∈ NX(y),

by definition, there exists a sequence xi
X
→ y and vectors vi ∈ N̂X(xi) converging to v̄.

Condition (a) therefore guarantees v̄ ∈ NY(y), as claimed. □

The following lemma shows that condition (b≤) implies condition (a) for any sets X

andY. Moreover, it is classically known that there exist smooth manifolds X andY that

satisfy condition (b≤) but not (a); see e.g. [42]. Therefore (b≤) is strictly stronger than

(a).

Lemma 3.1.2. The implication (b≤) ⇒ (a) holds for any sets X and Y. Moreover, the

implication (b≥) ⇒ (a) holds if N̂Y(x̄) is a linear subspace.

Proof. Suppose that X is (b≤)-regular along Y. Consider a sequence xi ∈ X converging

to a point y ∈ Y and vectors vi ∈ NX(xi) converging to some vector v. It suffices to
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argue that the inclusion v ∈ N̂Y(y) holds. To this end, consider an arbitrary sequence

y j ∈ Y \ {y} converging to y. Passing to a subsequence, we may suppose that the unit

vectors y j−y
∥y j−y∥ converge. For each j we may choose an index i j satisfying ∥xi j−y∥ ≤ ∥y j−y∥

j .

Straightforward algebraic manipulations directly imply

lim
j→∞

⟨v, y j − y⟩
∥y j − y∥

≤ lim sup
j→∞

⟨vi j , y j − xi j⟩

∥y j − xi j∥
≤ 0,

where the last inequality follows from (b≤)-regularity. Thus, v lies in N̂Y(x̄), as claimed.

The proof of the implication (b≥) ⇒ (a) when N̂Y(x̄) is a linear subspace is analogues.

□

Notice that condition (a) does not specify the rate at which the gap ∆(NX(xi),NY(y))

tends to zero as xi ∈ X tends to y. A natural strengthening of the condition, introduced

by Verdier [24] in the smooth category, requires the gap to be linearly bounded by ∥xi −

y∥, with a coefficient that is uniform over all y ∈ Y.1 Condition (b) can be similarly

strengthened. The following definition records the resulting two properties.

Definition 3.1.2 (Strong (a) and strong (b)). Consider two sets X,Y in E.

1. We say that X is strongly (a)-regular along Y if there exists a constant C > 0

satisfying

∆(NX(x),NY(y)) ≤ C · ∥x − y∥, (3.1.2)

for all x ∈ X and y ∈ Y.

2. We say that X is strongly (b≤)-regular along Y if there exists a constant C > 0

satisfying

⟨v, y − x⟩ ≤ C∥x − y∥2, (3.1.3)
1What we call strong (a) is often called condition (w), the Verdier condition, or the Kuo-Verdier (kw)

condition in the stratification literature.
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for all x ∈ X, y ∈ Y, and all vectors v ∈ NX(x) ∩ B. Properties strong (b≥) and

strong (b=) are defined analogously with the inequality in (3.1.3) replaced by ≥

and =, respectively.

More generally, we say that X is regular along Y near a point x̄ ∈ Y, in any of the

above senses, if there exists a neighborhood U of x̄ such that X ∩ U is regular along

Y ∩ U.

Summarizing, we have defined four fundamental regularity conditions quantifying

the compatibility of two sets X and Y. The most important situation for our purposes

is when Y is a smooth manifold contained in X. The algorithmic importance of these

conditions becomes clear when we interpret what they mean for epigraphs of functions.

With this in mind, for the rest of the section, we fix a closed function f : E → R ∪ {∞},

a setM ⊂ dom f , and a point x̄ ∈ M.

Definition 3.1.3 (Condition (b⋄) for functions). We say that f is (a)-regular alongM

near x̄ if the epigraph of f is (a)-regular along gph f |
M

near (x̄, f (x̄)). Conditions (b⋄),

strong (a), and strong (b⋄) are defined similarly.

Our immediate goal is to interpret regularity of a function f along M in purely

analytic terms. We begin with conditions (b⋄) and strong (b⋄). To this end, we will need

the following simple lemma.

Lemma 3.1.3 (Regularity of the domain). Suppose that f is locally Lipschitz continuous

on its domain. If f is (b⋄)-regular alongM near x̄, then the domain of f is (b⋄)-regular

alongM near x̄. Analogous statements hold for strong (b⋄).

Proof. Suppose that f is (b⋄)-regular alongM near x̄. For any x ∈ dom f and y ∈ M

set X = (x, f (x)) and Y = (y, f (y)). Then for any unit vector v ∈ Ndom f (x), the vector
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V = (v, 0) satisfies the inclusion V ∈ Nepi f (X) and therefore we may write〈
v,

y − x
∥y − x∥

〉
=

〈
V,

Y − X
∥Y − X∥

〉
·
∥Y − X∥
∥y − x∥

.

Using (b⋄)-regularity of epi f along Y and local Lipschitz continuity of f on its do-

main immediately guarantees that dom f is (b⋄)-regular alongM near x̄. The analogous

statement for strong (b⋄) follows from the same argument. □

The following result interprets (b⋄)-regularity of a function in purely analytic terms.

Theorem 3.1.4 (From geometry to analysis). Suppose that f is locally Lipschitz contin-

uous on its domain. Then the following are true.

1. (condition (b)) f is (b≤)-regular alongM near x̄ if and only if there exists ϵ > 0

such that the estimates

f (x) + ⟨v, y − x⟩ − f (y)√
1 + ∥v∥2

≤ o(∥y − x∥), (3.1.4)〈 w
∥w∥

, y − x
〉
≤ o(∥y − x∥), (3.1.5)

hold for all x ∈ dom f ∩ Bϵ(x̄), y ∈ M ∩ Bϵ(x̄), v ∈ ∂ f (x), and w ∈ ∂∞ f (x).

2. (strong (b)) f is strongly (b≤)-regular alongM near x̄ if and only if there exists

a constant ϵ0 such that the estimate holds:

f (x) + ⟨v, y − x⟩ − f (y)√
1 + ∥v∥2

≤ O(∥y − x∥2), (3.1.6)〈 w
∥w∥

, y − x
〉
≤ O(∥y − x∥2), (3.1.7)

hold for all x ∈ dom f ∩ Bϵ(x̄), y ∈ M ∩ Bϵ(x̄), v ∈ ∂ f (x), and w ∈ ∂∞ f (x).

Analogous equivalences hold for (b=) and (b≥), along with their strong variants, by

replacing the inequalities in (3.1.4)-(3.1.7) by = and ≤, respectively.
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Proof. Throughout the proof, set X = epi f and Y := gph f |
M

. We will use capital let-

ters X, Y , and X̄ to denote the lifted points (x, f (x)), (y, f (y)), and (x̄, f (x̄)), respectively.

We will use the relationship for any point x ∈ dom f [28, Theorem 8.9]:

NX(X) coincides with the union of R++(∂ f (x) × {−1}) and ∂∞ f (x) × {0}. (3.1.8)

By definition, f is (b≤)-regular alongM near x̄ if and only if for any the estimate

⟨V,Y − (x, r)⟩ ≤ o(∥(x, r) − Y∥) · ∥V∥, (3.1.9)

holds for all x ∈ dom f and y ∈ M with (x, r) and Y sufficiently close to X̄, and for

all V ∈ NX(x, r). Let us look at the two cases r = f (x) and r > f (x). In the former

case r = f (x), condition (3.1.9) is formally equivalent to the two conditions (3.1.4) and

(3.1.5). In the latter case r > f (x), the expression (3.1.9) becomes

⟨w, y − x⟩ ≤ o(∥(x, r) − Y∥) · ∥w∥

for all w ∈ Ndom f (x). Clearly, this is implied by (b≤) regularity of dom f along M

near x̄. The claimed equivalence for (b≤)-regularity now follows immediately from

Lemma 3.1.3. The rest of the equivalence follow from an analogous argument. □

The conditions in Theorem 3.1.4 are particularly transparent when f is Lipschitz

continuous near x̄. Then ∂∞ f (x̄) consists only of the zero vector and ∂ f (x) is nonempty

and uniformly bounded near x̄. Therefore, conditions (b≤) and strong (b≤), respectively,

are equivalent to the two properties

f (y) ≥ f (x) + ⟨v, y − x⟩ + o(∥y − x∥)

f (y) ≥ f (x) + ⟨v, y − x⟩ + O(∥y − x∥2)

as x and y ∈ M tend to x̄ and v ∈ ∂ f (x) is arbitrary. In words, condition (b≤) ensures a

restricted lower Taylor approximation property as x and y ∈ M tend to x̄ and v ∈ ∂ f (x)
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are arbitrary. Strong (b)-regularity, in turn, replaces the little-o term with the squared

norm O(∥x − y∥2). In particular, this holds automatically if f is weakly convex. When

M = {x̄} is a single point, condition (b=) reduces to generalized differentiability in the

sense of Norkin [45] and is closely related to the semismoothness property of Mifflin

[44].

Condition (b≤) becomes particularly useful algorithmically when the inclusion 0 ∈

∂̂ f (x̄) holds andM is a C1 active manifold of f around x̄. Indeed, condition (b≤) along

with the sharp growth guarantee of Theorem 2.4.2 then imply that there exists a constant

µ > 0 such that the estimate

⟨v, x − PM(x)⟩ ≥ µ · dist(x,M), (3.1.10)

holds for all x ∈ dom f near x̄ and for all v ∈ ∂ f (x). In words, this means that negative

subgradients of f at x always point towards the active manifold. The angle condition

(3.1.10) together with strong (a) regularity will form the core of the algorithmic devel-

opments. For ease of reference, we record a slight generalization of the angle condition

(3.1.10) when f is not necessarily locally Lipschitz around x̄ and can even be infinite-

valued.

Corollary 3.1.5 (Proximal aiming). Consider a closed function f : E → R ∪ {∞} that

admits an active C1-manifold M at a point x̄ satisfying 0 ∈ ∂̂ f (x̄). Suppose that f is

locally Lipschitz continuous on its domain and that f is (b≤)-regular alongM near x̄.

Then, there exists a constant µ > 0 such that the estimate

⟨v, x − PM(x)⟩ ≥ µ · dist(x,M) −
√

1 + ∥v∥2 · o(dist(x,M)), (3.1.11)

holds for all x ∈ dom f near x̄ and for all v ∈ ∂ f (x). Moreover, if f is locally Lipschitz

around x̄, the same statement holds with ∂ f (x) replaced by ∂c f (x) and with the negative

term omitted in (3.1.11).2

2The last claim follows immediately from (3.1.11) by possibly increasing µ > 0 and taking convex
combinations of limiting subgradients, all of which are uniformly bounded.
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Next, we move on to interpreting conditions (a) and strong (a) in analytic terms.

We will focus on the most interesting setting when M is a smooth manifold and the

restriction of f toM is smooth near x̄. In particular, we will make use of the following

observation in our arguments: the tangent space to Y := gph f |
M

at Y := (y, f (y)) is:

TY(Y) = {(u, ⟨∇M f (y), u⟩) : u ∈ TM(y)}. (3.1.12)

Lemma 3.1.4 (Regularity of the domain). Suppose that f is locally Lipschitz continuous

on its domain,M is a C1 manifold around x̄, and the restriction of f toM is C1-smooth

near x̄. If f is (a)-regular alongM near x̄, then the domain of f is (a)-regular alongM

near x̄. Analogous statement holds for strong (a)-regularity.

Proof. Throughout the proof, set Y = gph f |
M

. Suppose first that f is (a)-regular along

M near x̄. Note the inclusion Ndom f (y) × {0} ⊆ Nepi f (y, f (y)) for all y near x̄. Using

Lemma 3.1.1, we therefore conclude Ndom f (y)×{0} ⊆ NY(y, f (y)). The desired inclusion

Ndom f (y) ⊂ NM(y) now follows immediately from (3.1.12).

Finally, suppose that f is strongly (a)-regular alongM near x̄. Fix points x ∈ dom f

and y ∈ M near x̄ and as before define X = (x, f (x)) and Y = (y, f (y)). Then condition

(a) implies that there exists a constant C > 0 such that for any v ∈ Ndom f (x̄) there is a

vector (w1,w2) ∈ NY(Y) satisfying ∥(v, 0)− (w1,w2)∥ ≤ C∥X −Y∥. It follows easily from

the description (3.1.12) that the inclusion w1 + w2∇M f (y) ∈ NM(y) holds, and therefore

dist(v,NM(y)) ≤ ∥v − w1 − w2∇M f (y)∥ ≤ C(1 + ∥∇M f (y)∥)∥X − Y∥.

Since f is locally Lipschitz continuous on its domain, there exists C′ > 0 satisfying

∥∇M f (y)∥ ≤ C′ and ∥X − Y∥ ≤ C′∥x − y∥ for all x ∈ dom f and y ∈ M near x̄. Thus

dom f is strongly (a)-regular alongM at x̄, as claimed. □

The following theorem reinterprets conditions conditions (a) and strong (a) in en-

tirely analytic terms.
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Theorem 3.1.6 (From geometry to analysis). Suppose that f is locally Lipschitz con-

tinuous on its domain, M is a C1 manifold around x̄, and the restriction of f toM is

C1-smooth near x̄. The following claims are true.

1. (condition (a)) f is (a)-regular alongM near x̄ if and only if the inclusions hold:

PTM(x)(∂ f (x)) ⊆ {∇M f (x)} and ∂∞ f (x) ⊆ NM(x). (3.1.13)

for all x ∈ M near x̄.

2. (strong (a)) f is strongly (a)-regular alongM near x̄ if and only if there exist

constants C, ϵ > 0 satisfying:

∥PTM(y)(v − ∇M f (y))∥ ≤ C
√

1 + ∥v∥2∥x − y∥, (3.1.14)

∥PTM(y)(w)∥ ≤ C∥w∥ · ∥x − y∥, (3.1.15)

for all x ∈ dom f ∩ Bϵ(x̄) and y ∈ M ∩ Bϵ(x̄), v ∈ ∂ f (x), and w ∈ ∂∞ f (x).

Proof. The proof is similar to that of Theorem 3.1.4. Throughout, set X = epi f and

Y := gph f |
M

. We will use capital letters X, Y , and X̄ to denote the lifted points (x, f (x)),

(y, f (y)), and (x̄, f (x̄)), respectively. We also recall the relationship for any point x ∈

dom f [28, Theorem 8.9]:

NX(X) coincides with the union of R++(∂ f (x) × {−1}) and ∂∞ f (x) × {0}. (3.1.16)

Lemma 3.1.1 implies that f is (a)-regular along M near x̄ if and only if the inclusion

NX(X) ⊂ NY(X) holds for all x near x̄, or equivalently ⟨NX(X),V⟩ = {0} for all V ∈

TY(X). In light of (3.1.12) and (3.1.16), this happens if and only if

⟨∂ f (x) − ∇M f (x), u⟩ ⊆ {0} and ⟨∂∞ f (x), u⟩ = {0} ∀u ∈ TM(x),

which is clearly equivalent to (3.1.13).
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Next, by definition f is strongly (a)-regular alongM near x̄ if and only if there exists

a constant C such that

⟨U,V⟩ ≤ C∥U∥ · ∥V∥ · ∥(x, r) − Y∥ (3.1.17)

for all (x, r) ∈ X and Y ∈ Y sufficiently close to X̄, and for all U ∈ NX((x, r)) and

V ∈ TY(Y). Let us interpret (3.1.17) in two cases, r = f (x) and r > f (x). In the former

case r = f (x), in light of (3.1.16) and local Lipschitz continuity of f on its domain,

condition (3.1.17) simplifies to

⟨v − ∇M f (y), u⟩ ≤ C′
√
∥v∥2 + 1 · ∥u∥ · ∥x − y∥, (3.1.18)

⟨w, u⟩ ≤ C′∥w∥ · ∥u∥ · ∥x − y∥. (3.1.19)

holding for some constant C′, for all x ∈ dom f and y ∈ M sufficiently close to x̄, and

for all u ∈ TM(y), v ∈ ∂ f (x), and w ∈ ∂∞ f (x). In the case r > f (x), taking into account

the equality NX(x, r) = Ndom f × {0}, we see that (3.1.17) reduces to

⟨w, u⟩ ≤ C′∥w∥ · ∥u∥ ·
√
∥x − y∥2 + (r − f (y))2

holding for all w ∈ Ndom f (x). Clearly, this is implied by dom f being strongly (a)-regular

alongM at x̄. In particular, taking into account Lemma 3.1.4 we see that this condition

holds automatically if f is strongly (a) regular alongM at x̄. The claimed equivalence

for strong (a) regularity follows immediately. □

Again the conditions in Theorem 3.1.6 become particularly transparent when f is

Lipschitz continuous near x̄. Then conditions (a) and strong (a), respectively, are equiv-

alent to

PTM(y)(∂ f (y)) = {∇M f (y)}

∥PTM(y)(∂ f (x) − ∇M f (y))∥ = O(∥x − y∥)

24



holding as x → x̄ and y ∈ M tend to x̄. In words, condition (a) is equivalent to the

projection PTM(y)(∂ f (y)) reducing to a a single point—the covariant gradient ∇M f (y).

This type of property is called the projection formula in [46]. Strong (a) provides a

“stable improvement” over the projection formula wherein the deviation ∂ f (x)−∇M f (y)

in tangent directions TM(y) is linearly bounded by ∥x − y∥, for points x ∈ E and y ∈ M

near x̄.

The rest of the chapter is devoted to exploring the relationship between the four

basic regularity conditions, presenting examples, proving calculus rules, and justifying

that these conditions hold “generically” along active manifolds. Section 4.2 will use

these conditions to analyze subgradient-type algorithms. This chapter is based on the

works [25, 47].

3.2 Relation between the four conditions

The goal of this section is to explore the relationship between the four regularity con-

ditions. Recall that Lemma 3.1.2 already established the implication (b≤) ⇒ (a). More

generally, the goal of this section is to show in reasonable settings the string of implica-

tions:

(a) ⇐ (b=) ⇐ strong (a) ⇐ strong (b=) . (3.2.1)

Before passing to formal statements, we require some preparation. Namely, the task

of verifying conditions (b⋄), strong (a), and strong (b⋄) requires considering arbitrary

points x ∈ X and y ∈ Y, which are a priori unrelated. We now show that it essentially

suffices to set y to be the projection of x ontoY, or more generally a retraction of x onto

Y. In this way, we may remove one degree of flexibility for the question of verification.

We begin by defining the projected variants of conditions (b⋄), strong (a), and strong
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(b⋄).

We begin by defining retractions onto a setY, with the nearest point projection being

the primary example. The added flexibility will be useful once we pass to functions.

Definition 3.2.1 (Retractions). A map π : E → E is a retraction onto a set Y ⊂ E near

a point x̄ ∈ Y if

1. the inclusion π(x) ∈ X holds for all x near x̄,

2. there exists a constant C ≥ 0 such that the inequality ∥x − π(x)∥ ≤ C · dist(x,Y)

holds for all x near x̄.

If π is Cp-smooth near x̄, we call π a Cp-smooth retraction.

Next, we define the projected conditions.

Definition 3.2.2 (Projected conditions). Fix two sets X,Y ⊂ E, a point x̄ ∈ Y, and a

retraction π onto Y. We say that X is (bπ⋄)-regular along Y at x̄ if it satisfies condition

(b⋄) in the restricted setting yi = π(xi). Conditions strong (aπ) and strong (bπ⋄) are defined

analogously.

The following theorem allows one to reduce the question of verifying regularity

conditions to the setting y ∈ π(x).

Theorem 3.2.3. Fix two sets X,Y ⊂ E, a point x̄ ∈ Y, and a C1-smooth retraction π

onto Y. Suppose moreover that Y is a C1-smooth manifold near x̄. Then the equiva-

lences hold:

1. strong (a) ⇔ strong (aπ)
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2. (a) and (bπ⋄) ⇔ (b⋄)

Moreover, if π is C2-smooth, then the implication holds:

strong (aπ) and strong (bπ⋄) ⇒ strong (b⋄).

Proof. Suppose that X is strongly (aπ)-regular regular alongY near x̄. Thus there exists

a constant C1 > 0 such that

∆ (NX(x),NY(π(x))) ≤ C1∥x − π(x)∥, (3.2.2)

for all x ∈ X sufficiently close to x̄. On the other hand, since π is a retraction onto Y,

there exists some constant C′ > 0 satisfying ∥x−π(x)∥ ≤ C′ ·∥x−y∥ for all ∈ X and y ∈ Y

near x̄. Moreover, since Y is a C1-smooth manifold, there exists a constant C2 > 0 such

that
∆ (NY(π(x)),NY(y)) ≤ C2∥π(x) − y∥

≤ C2 (∥π(x) − x∥ + ∥x − y∥)

≤ (1 +C′)C2∥x − y∥.

(3.2.3)

Combining (3.2.2) and (3.2.3), and using the triangle inequality, we conclude

∆(NX(x),NY(y)) ≤ (C1C′ + (1 +C′)C2) ∥x − y∥, for all x ∈ X, y ∈ Y sufficiently close to

x̄. Thus X is strongly (a)-regular along Y at x̄ as claimed.

Next, suppose that X is both (a) and (bπ⋄) regular along Y near x̄. Let xi ∈ X and

yi ∈ Y be sequences converging to some point y near x̄ and let vi ∈ NX(xi) be arbitrary.

Let us write 〈
vi,

yi − xi

∥yi − xi∥

〉
=

〈
vi,
π(xi) − xi

∥yi − xi∥

〉
+

〈
vi,

yi − π(xi)
∥yi − xi∥

〉
. (3.2.4)

We analyze each term on the right side separately. To this end, observe〈
vi,
π(xi) − xi

∥yi − xi∥

〉
=

〈
vi,

π(xi) − xi

∥π(xi) − xi∥

〉
·
∥π(xi) − xi∥

∥yi − xi∥
.
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Therefore, the accumulation points of
〈
vi,

π(xi)−xi
∥yi−xi∥

〉
inherit the sign of the accumulation

points of
〈
vi,

π(xi)−xi
∥π(xi)−xi∥

〉
.

Next, moving on since the retraction π is C1-smooth near x̄, we deduce

lim sup
i→∞

∣∣∣∣∣〈vi,
yi − π(xi)
∥yi − xi∥

〉∣∣∣∣∣ ≤ lim sup
i→∞

∣∣∣∣∣〈vi,
∇π(xi)(yi − xi)
∥yi − xi∥

〉∣∣∣∣∣ . (3.2.5)

Passing to a subsequence, we may assume yi−xi
∥yi−xi∥

tends to some vector w ∈ E and that vi

converge to some vector v. Observe that since π maps points into Y, the range of ∇π(y)

is contained in the tangent space TY(y). Noting that condition (a) guarantees v ∈ NY(y),

we deduce that the right-side of (3.2.5) is zero. Thus condition (b⋄) holds.

Next, suppose that π is C2-smooth and that X is both strongly (aπ)-regular and

strongly (bπ⋄)-regular along Y near x̄. Note that we already proved that strong (aπ) im-

plies strong (a). We return to the decomposition:〈
vi,

yi − xi

∥yi − xi∥
2

〉
=

〈
vi,
π(xi) − xi

∥yi − xi∥
2

〉
+

〈
vi,

yi − π(xi)
∥yi − xi∥

2

〉
. (3.2.6)

and analyze each term separately. To this end, we may write〈
vi,
π(xi) − xi

∥yi − xi∥
2

〉
=

〈
vi,

π(xi) − xi

∥π(xi) − xi∥
2

〉
∥π(xi) − xi∥

2

∥yi − xi∥
2 .

Therefore, the accumulation points of
〈
vi,

π(xi)−xi
∥yi−xi∥2

〉
inherit the sign of the accumulation

points of
〈
vi,

π(xi)−xi
∥π(xi)−xi∥2

〉
. Next, since π is C2 smooth, we compute

lim sup
i→∞

∣∣∣∣∣〈vi,
yi − π(xi)
∥yi − xi∥

2

〉∣∣∣∣∣ ≤ lim sup
i→∞

1
∥yi − xi∥

·

∣∣∣∣∣〈vi,
∇π(yi)(yi − xi)
∥yi − xi∥

〉∣∣∣∣∣ . (3.2.7)

Since wi := ∇π(yi)(yi−xi)
∥yi−xi∥

is tangent to Y at yi, strong (a) regularity implies that the right

side of (3.2.7) is finite. We thus conclude that X is strongly (b⋄) regular along Y near x̄,

as claimed. □

With Theorem 3.2.3 at hand, we may now establish the remaining implications in

(3.2.1), beginning with strong (b≥) implies strong (a).
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Proposition 3.2.4 (Strong (b≥) implies strong (a)). Consider a C3 manifold Y that is

contained in a set X ⊂ E. Suppose that X is prox-regular at a point x̄ ∈ Y. Then the

following implication holds:

strong (b≥) ⇒ strong (a).

Proof. Suppose that X is strongly (b≥)-regular along Y near x̄. In light of Theo-

rem 3.2.3, it suffices to prove that the strong (aπ) condition holds for C2-smooth re-

traction. We will use the projection π := PY, which is indeed a C2-smooth retraction

onto Y since Y is a C3 manifold. Thus, there exist constants ϵ, L > 0 satisfying

∥PY(y + h) − PY(y) − ∇PY(y)h∥ ≤ L∥h∥2, (3.2.8)

for all y ∈ Bϵ(x̄) and h ∈ ϵB. Fix now two points x ∈ X and y ∈ Y and a unit vector

v ∈ NX(x). Clearly, we may suppose v < NY(y), since otherwise the claim is trivially

true. Define the normalized vector w := −
PTY(y)(v)
∥PTY(y)(v)∥ . Noting the equality ∇PY(y) = PTY(y)

and appealing to (3.2.8), we deduce the estimate

∥PY(y − αw) − (y − αw)∥ ≤ L∥αw∥2 = Lα2,

for all y ∈ Bϵ(x̄) and α ∈ (0, ϵ). Shrinking ϵ > 0, prox-regularity yields the estimate

⟨v, PY(y − αw) − x⟩ ≤
ρ

2
∥x − PY(y − αw)∥2,

for some constant ρ > 0. Therefore, we conclude

α∥PTY(y)v∥ = −α ⟨v,w⟩ = ⟨v, x − y⟩ + ⟨v, PY(y − αw) − x⟩ + ⟨v, (y − αw) − PY(y − αw)⟩

≤ C∥x − y∥2 +
ρ

2
∥x − PY(x − αw)∥2 + Lα2,

where the last inequality follows from the strong (b≥) condition. Note that the middle

term is small:

∥PY(y−αw)− x∥2 ≤ 2∥PY(y−αw)−(y−αw)∥2+2∥y−αw− x∥2 ≤ 2L2α4+4∥y− x∥2+4α2.
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Thus, we have

α∥PTY(y)v∥ ≤ C∥x − y∥2 + ρL2α4 + 2ρ∥x − y∥2 + 2ρα2 + Lα2.

Dividing both sides by α and setting α = ∥x − y∥ completes the proof. □

Next we prove the last implication, strong (a)⇒ (b=), in the definable category. This

result thus generalizes the theorems of Kuo [48], Verdier [24], and Ta Le Loi [49]. The

proof technique we present is different from those in the earlier works on the subject

and will be based on an application of the Kurdyka-Łojasiewicz inequality [46].

Theorem 3.2.5 (Strong (a) implies (b)). Fix two definable sets X,Y ⊂ E and a point

x̄ ∈ Y. Suppose in addition that Y is a C2-smooth manifold around x̄ and that X is a

locally closed set. Then the following implication holds:

strong (a) ⇒ (b=).

We note that the theorem may easily fail for general C∞-manifoldsX andY, without

some extra “tameness” assumption such as definability. See the discussion in [49] for

details.

Proof. Suppose that X is strongly (a)-regular alongY near x̄. In light of Theorem 3.2.3,

it suffices to show that X is (bπ)-regular along Y near x̄. To this end, define the function

g(x, v) = | ⟨v, x − PY(x)⟩ | + δclX(x).

Fix a compact neighborhood U of {x̄} × B. Then the KL-inequality [46, Theorem 11]

ensures that there exists η > 0 and a continuous function ψ : [0, η) → R satisfying

ψ(0) = 0 and ψ′(0) = 0 such that

g(x, v) ≤ ψ(dist(0, ∂g(x, v)))). (3.2.9)

30



for any (x, v) ∈ U with g(x, v) ≤ η. It suffices now to show that dist(0, ∂g(x, v)) is linearly

upper bounded by dist(x,Y) for all x ∈ X near x̄ and all unit vectors v ∈ NX(x). To this

end, fix any point (x, v). Clearly, we may assume g(x, v) , 0, since otherwise there is

nothing to prove. We compute

∂g(x, v) = {(I − ∇PY(x))v + NclX(x)} × {x − PY(x)}.

Therefore as long as v ∈ NX(x) we have

dist(0, ∂g(x, v)) ≤ ∥∇PY(x)v∥ + dist(x,Y). (3.2.10)

Since Y is a C2-manifold near x̄, there exists a constant L > 0 such that the inequality

∥∇PY(x)∥ ≤ L holds for all x near x̄. Further, let C > 0 be the constant from the defining

property (3.1.2) of strong (a) regularity. Thus, as long as x ∈ X is sufficiently close to

x̄, there exists a vector w ∈ NY(PY(x)) satisfying ∥v − w∥ ≤ Cdist(x,Y). Therefore,

continuing with (3.2.10) we deduce

dist(0, ∂g(x, v)) ≤ ∥∇PY(x)w∥ + (1 +CL)dist(x,Y).

To complete the proof, note that ∇PY(x)w = 0 since range(∇PY(x)) ⊆ TY(PY(x)). □

3.3 Basic examples

Having a clear understanding of how the four regularity conditions are related, we now

present a few interesting examples of sets that are regular along a distinguished sub-

manifold. More interesting examples can be constructed with the help of calculus rule,

discussed at the end of the section. We begin with the following simple example show-

ing that any convex cone is regular along its lineality space.
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Proposition 3.3.1 (Cones along the lineality space). Let X ⊂ E be a convex cone and

let Y = lin(X) denote its lineality space. Then X is both strongly (a) and strongly (b=)

regular along Y.

Proof. Strong (a) regularity follows from the inclusion NX(x) ⊂ NY(y) holding for all

x ∈ X and y ∈ Y. Next, fix any points x ∈ X and y ∈ Y and a vector v ∈ NX(x).

Strong (b=) regularity follows from the equality ⟨v, x − y⟩ = 0, which is straightforward

to verify. □

More interesting examples may be constructed as diffeomorphic images of cones

around points in the lineality space. Following [5], a set X ⊂ E is said to be Cp-cone

reducible around a point x̄ ∈ X if there exist a closed convex cone K in some Euclidean

space Y, open neighborhoods U of x̄ and V of the origin in Y, and a diffeomorphism

φ : U → V satisfying φ(x̄) = 0 and X ∩ U = φ−1(K ∩ V). In this case, it follows

from [2, Theorem 4.2] that the setM = φ−1(lin(K) ∩ V) is an active manifold for X at x̄

for any v ∈ ri NX(x̄). Common examples of sets that are cone reducible around each of

their points are polyhedral sets, the cone of positive semidefinite matrices, the Lorentz

cone, and any set cut out by smooth nonlinear inequalities with linearly independent

gradients. It is straightforward to see that conditions (a) and (b⋄) are preserved under

C1 diffeomorphisms, while strong (a) and strong (b⋄) are preserved under C2 diffeomor-

phisms. The following is therefore an immediate consequence of Proposition 3.3.1.

Corollary 3.3.2 (Cone reducible sets are regular along the active manifold). Suppose

that a set X is C2 cone reducible to K by φ : U → V around x̄. Then X is strongly (a)

and strongly (b=)-regular along φ−1(lin(K) ∩ V) near x̄.

The next proposition shows that any convex set is strongly (a)-regular along any

affine space contained in it.
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Proposition 3.3.3 (Affine subsets of convex sets). Consider a convex set X ⊂ E and a

subset Y ⊂ X that is locally affine around a point x̄ ∈ Y. Then X is strongly (a)-regular

along Y near x̄.

Proof. Translating the sets we may suppose x̄ = 0 and therefore that Y coincides with

a linear subspace near the origin. Fix now points x ∈ X and y ∈ Y and a unit vector

v ∈ NX(x). Clearly, we may suppose v < NY(y), since otherwise the claim is trivially

true. Define the normalized vector w := − PY(v)
∥PY(v)∥ . The for all y ∈ Y near x̄ and all small

α > 0, using the linearity of the projection PY we compute

α∥PTY(y)v∥ = α∥PYv∥ = −α ⟨v,w⟩ = ⟨v, x − y⟩ + ⟨v, PY(y − αw) − x⟩ ≤ ∥x − y∥,

where the last inequality follows from convexity of X. This completes the proof. □

Not surprisingly, the conclusion of Theorem 3.3.3 can easily fail if X is prox-regular

(instead of convex) or if Y is a smooth manifold (instead of affine). This is the content

of the following example.

Example 3.3.1 (Failure of strong (a)-regularity). Define X to be the epigraph of the

function f (x, y) = max{0, y − x2} and set Y to be the x-axis Y = R × {0} × {0}. Consider

the sequence yk = (1/k, 0, 0)) in Y and xk = (1/k, 1/k2, 0) in X converging to the origin.

Fix the sequence of normal vectors vk = (−2/k, 1,−1) ∈ NX(xk) and note NY(yk) =

{0} × R × R. A quick computation shows

∆

( vk

∥vk∥
,NY(yk)

)
=

2/k√
2 + 4/k2

≥
2

k
√

6
=

2
√

6

√
∥xk − yk∥.

Therefore X is not strongly (a)-regular along Y near x̄.

Strong (a)-regularity fails in the above example “by a square root factor in the dis-

tance toY.” The following theorem shows a surprising fact: the estimate (3.1.2) is guar-

anteed to hold up to a square root for any prox-regular set along a smooth submanifold.
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Since we will not use this result and the proof is very similar to that of Proposition 3.2.4,

we have placed the argument in the appendix.

Proposition 3.3.4 (Strong (a) up to square root). Consider a C3 manifold Y that is

contained in a set X ⊂ E. Suppose that X is prox-regular around a point x̄ ∈ Y. Then

there exists a constant C > 0 satisfying

∆(NX(x),NY(y)) ≤ C ·
√
∥x − y∥, (3.3.1)

for all x ∈ X and y ∈ Y sufficiently close to x̄.

The following example connects (b=)-regularity to inner-semicontinuity of the nor-

mal cone map. Recall that a set-valued map F : E⇒ Y is an assignment of points x ∈ E

to subsets F(x) ⊂ Y. The map F is called inner-semicontinuous at x̄ ∈ E if for any

vector ȳ ∈ F(x̄) and any sequence xi → x̄, there exists a sequence yi ∈ F(xi) converging

to ȳ.

Proposition 3.3.5 (Condition (b) and inner semicontinuity). Consider a set X and a

subset Y ⊂ X. Suppose that X is prox-regular at some point x̄ ∈ Y and that that the

normal cone map NX is inner-semicontinuous onY near x̄. ThenX is (b=)-regular along

Y near x̄.

Proof. Consider sequences xi ∈ X and yi ∈ Y converging to a point y ∈ Y near x̄. Let

vi ∈ NX(xi) be arbitrary unit normal vectors. Passing to a subsequence we may assume

that vi converge to some unit normal vector v̄ ∈ NX(y). By inner semicontinuity, there

exist unit vectors wi ∈ NX(yi) converging to v̄. Define the unit vectors ui := xi−yi
∥xi−yi∥

. Prox-

regularity of X therefore guarantees ⟨vi, ui⟩ ≥ −
ρ

2∥xi − yi∥ and ⟨wi, ui⟩ ≤
ρ

2∥xi − yi∥. We

conclude

−
ρ

2
∥xi − yi∥ ≤ ⟨vi, ui⟩ = ⟨wi, ui⟩ + ⟨vi − wi, ui⟩ ≤

ρ

2
∥xi − yi∥ + ∥vi − wi∥.
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Noting that the left and right sides both tend to zero completes the proof. □

In particular, any proximally smooth set is (b=)-regular along any of its partly smooth

submanifolds in the sense of Lewis [2].

3.4 Preservation of regularity under preimages by transversal maps

More interesting examples may be constructed through calculus rules. The next theorem

shows that the four regularity conditions are preserved by taking preimages of smooth

maps under a transversality condition.

Theorem 3.4.1 (Smooth preimages). Consider a C1-map F : Y → E and an arbitrary

point x̄ ∈ Y. Let X,Y ⊂ E be two locally closed sets with Y Clarke regular and

containing F(x̄). Suppose that the transversality condition holds:

NY(F(x̄)) ∩ Null (∇F(x̄)∗) = {0}. (3.4.1)

Then the following are true.

1. If X is (a)-regular along Y at F(x̄) then F−1(X) is (a)-regular along F−1(Y) at x̄.

2. If X is (a)-regular and (b⋄)-regular along Y at F(x̄), then F−1(X) is (b⋄)-regular

along F−1(Y) at x̄.

If in addition F is C2-smooth, then the following are true.

3 If X is strongly (a)-regular along Y, then F−1(X) is strongly (a)-regular along

F−1(Y) at x̄.
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4 If X is both (a)-regular and strongly (b⋄)-regular along Y at F(x̄), then F−1(X) is

strongly (b⋄)-regular along F−1(Y) at x̄.

Proof. Notice that the transversality condition (3.4.1) is stable under perturbation of x̄.

In particular, it straightforward to see that there exists a constant τ > 0 and a neighbor-

hood U of x̄ satisfying

∥∇F(y)∗v∥ ≥ τ∥v∥ for all y ∈ F−1(Y) ∩ U, v ∈ NY(F(y)).

Moreover, shrinking U, we may assume that F is ℓ-Lipschitz continuous on U. We

prove the theorem in the order: (1), (3), (2), (4).

Claim 1: Suppose that X is (a)-regular along Y is at F(x̄). Then, shrinking η, τ > 0 and

U, we may ensure:

∥∇F(x)∗v∥ ≥ τ∥v∥ for all x ∈ F−1(X) ∩ U, v ∈ NX(F(x)). (3.4.2)

Transversality and Clarke regularity of Y imply [28, Theorem 10.6]

NF−1(Y)(y) = ∇F(y)∗NY(F(y)) and NF−1(X)(x) ⊂ ∇F(x)∗NX(F(x)) (3.4.3)

for all y ∈ F−1(Y) and x ∈ F−1(X) sufficiently close to x̄.

Consider now a sequence xi ∈ F−1(X) converging to a point y ∈ F−1(Y) near x̄

and a sequence of unit normal vectors wi ∈ NF−1(X)(xi) converging to some vector

w. Using (3.4.3), we may write wi = ∇F(xi)∗vi for some vectors vi ∈ NX(F(xi)).

Note that due to (3.4.2), the sequence vi is bounded. Indeed, the norm of vi is up-

per bounded by a constant that is independent of xi and yi. Therefore passing to a

subsequence we may suppose vi converges to some vector v. Since X is (a)-regular

along Y at F(x̄), the inclusion v ∈ NY(F(y)) holds. Therefore using (3.4.3) we deduce
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w = limi→∞ ∇F(xi)∗vi = ∇F(y)∗v ∈ NF−1(Y)(F(y)). Thus F−1(X) is (a)-regular along

F−1(Y) near x̄.

Before moving on to the next three claims, note that each of them implies condition

(a) and therefore we can be sure that the expressions (3.4.2) and (3.4.3) hold. Therefore

for the rest of the proof, we will fix sequences xi, vi, and wi as in the proof of condition

(a), and we let yi ∈ F−1(Y) be an arbitrary sequence near x̄.

Claim 3: Suppose that F is C2-smooth and that X is strongly (a)-regular along Y at

F(x̄). Let C > 0 be the corresponding constant in (3.1.2). Shrinking U we may assume

∇F is L-Lipschitz continuous on U. We successively compute

dist(wi,NF−1(Y)(yi)) = dist(∇F(xi)∗vi,NF−1(Y)(yi))

≤ ∥∇F(xi) − ∇F(yi)∥op∥vi∥ + dist(∇F(yi)∗vi,NF−1(Y)(yi)) (3.4.4)

= ∥∇F(xi) − ∇F(yi)∥op∥vi∥ + dist(∇F(yi)∗vi,∇F(yi)∗NY(F(yi)))

(3.4.5)

≤ ∥∇F(xi) − ∇F(yi)∥op∥vi∥ + ∥∇F(yi)∥opdist(vi,NY(F(yi))) (3.4.6)

≤ L∥vi∥∥xi − yi∥ +Cℓ∥vi∥∥F(xi) − F(yi)∥ (3.4.7)

≤ (L +Cℓ2)∥vi∥∥xi − yi∥

≤ (L +Cℓ2)τ−1∥∇F(xi)∗vi∥∥xi − yi∥ (3.4.8)

= (L +Cℓ2)τ−1∥wi∥∥xi − yi∥,

where (3.4.4) follows from the triangle inequality, (3.4.5) follows from (3.4.3), the esti-

mate (3.4.7) follows from strong (a)-regularity, and (3.4.8) follows from (3.4.2). Thus

F−1(X) is strongly (a)-regular along F−1(Y) near x̄.
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Setting the stage for the remainder of the proof, we compute

⟨wi, yi − xi⟩ = ⟨vi, F(yi) − F(xi)⟩ − ⟨vi, F(yi) − F(xi) − ∇F(xi)(yi − xi)⟩. (3.4.9)

Claim 2: Suppose that X is (a)-regular and (b⋄)-regular along Y near F(x̄). Dividing

(3.4.9) though by ∥xi − yi∥ and taking into account that F is C1-smooth, we deduce that

the limit points of ⟨wi,
yi−xi
∥yi−xi∥

⟩ inherit the sign from the limit points of ⟨vi,
F(yi)−F(xi)
∥F(yi)−F(xi)∥

⟩.

Thus F−1(X) is (b⋄)-regular along F−1(Y) near x̄.

Claim 4: This is completely analogous to the proof of (b⋄)-regularity, except we divide

(3.4.9) though by ∥xi − yi∥
2 and pass to the limit. □

3.5 Preservation of regularity under spectral lifts

In this section, we study the prevalence of the four regularity conditions in eigenvalue

problems. We begin with some notation. The symbol Sn will denote the Euclidean space

of symmetric matrices, endowed with the trace inner product ⟨A, B⟩ = tr(AB) and the

induced Frobenius norm ∥A∥ =
√

tr(A2). The symbol O(n) will denote the set of n × n

orthogonal matrices. The eigenvalue map λ : Sn → Rn assigns to every matrix X its

ordered list of eigenvalues

λ1(X) ≥ λ2(X) ≥ . . . ≥ λn(X).

The following class of sets will be the subject of the study.

Definition 3.5.1. A set X ⊂ Rn → R is called symmetric if it satisfies

πX ⊂ X for all π ∈ Π(n).
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Definition 3.5.2. A set Q ⊂ Sn is called spectral if it satisfies

UQUT ⊂ Q for all U ∈ O(n).

Thus a set in Rn is symmetric if it is invariant under reordering of the coordinates.

For example, all ℓp-norm balls, the nonnegative orthant, and the unit simplex are sym-

metric. A set in Sn is spectral if it is invariant under conjugation of its argument by

orthogonal matrices. Spectral sets are precisely those that can be written as λ−1(X) for

some symmetric set X ⊂ Rn. See figure 3.2 for an illustration.

(a) p = 1 (b) p = 1.5 (c) p = 2 (d) p = 5 (e) p = ∞

Figure 3.2: Unit ℓp balls in R2 (top row) and unit balls of Schatten ℓp-norms ∥A∥p =
∥λ(A)∥p over S2 (bottom row).

A prevalent theme in variational analysis is that a variety of geometric properties

of a symmetric set X and those of its induced spectral set λ−1(X) are in one-to-one

correspondence. Notable examples include convexity [50, 51], smoothness [52, 53],

prox-regularity [54], and partial smoothness [55]. In this section, we add to this list

the four regularity conditions. The key idea of the arguments is to pass through the

projected conditions (Definition 3.2.2) and then invoke Theorem 3.2.3.

We will use the following expressions for the normal cone and the projection map to
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spectral sets λ−1(X):

Pλ−1(X)(X) =
{
UDiag(w)UT : w ∈ PX(λ(X)), U ∈ OX

}
Nλ−1(X)(X) =

{
UDiag(y)UT : y ∈ NX(λ(X)), U ∈ OX

} . (3.5.1)

where for any matrix X, we define the set of diagonalizing matrices

OX := {U ∈ O(n) : X = UDiag(λ(X))UT }.

The expression for the proximal map was established in [56] while the normal cone

formula was proved in [57]. An elementary proof of the subdifferential formula appears

in [56].

Theorem 3.5.3 (Spectral preservation of projected regularity). Let X̄ ∈ Sn be a symmet-

ric matrix and set x̄ = λ(X̄). Consider two locally closed symmetric sets X,Y ⊆ Rn such

that Y contains x̄. Let π and Π be the nearest-point projections onto Y and λ−1(Y),

respectively. Then the following are true.

1. If X is (a)-regular along Y near x̄, then λ−1(X) is (a)-regular along λ−1(Y) near

X̄.

2. If Y is prox-regular at x̄ and X is strongly (aπ)-regular along Y near x̄, then

λ−1(Y) is prox-regular at X̄ and X is strongly (aΠ)-regular along λ−1(X) near X̄.

The analogous statement holds for (bπ⋄) and strong (bπ⋄) conditions.

Proof. The result for (a)-regularity holds trivially from (3.5.1). Suppose now that Y is

prox-regular at x̄. Then the work [54] guarantees that λ−1(Y) is prox-regular at X̄. As

preparation for the rest of the proof, consider an arbitrary matrix X ∈ λ−1(X) near X̄ and

a normal vector V ∈ Nλ−1(X)(X) with unit Frobenius length. We may then write

V = UDiag(v)UT ,
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for some unit vector v ∈ NX(λ(X)) and orthogonal matrix U ∈ OX. Setting Y := Π(X)

and using (3.5.1), we may write

Y = UDiag(π(λ(X)))UT .

Notice that because the coordinates of λ(X) are decreasing and Y is symmetric, the

coordinates of π(λ(X)) are also decreasing; otherwise, one may reorder π(λ(X)) and find

a vector closer to λ(X) in Y. Consequently, we have

λ(Y) = π(λ(X)) and U ∈ OY . (3.5.2)

Suppose now that X is strongly (aπ)-regular along Y near λ(X̄) and let C be the

corresponding constant in (3.1.2). Thus there exists w ∈ NY(π(λ(X))) satisfying

∥v − w∥ = dist(v,NY(PY(λ(X))) ≤ C∥λ(X) − π(λ(X))∥ = C∥X − Y∥,

where the last equation follows X and Y being simultaneously diagonalizable. Taking

into account (3.5.1) and (3.5.2), we deduce that W := UDiag(w)UT lies in Nλ−1(Y)(Y).

Therefore we compute

dist(V,Nλ−1(Y)(Y)) ≤ ∥V −W∥ = ∥v − w∥ ≤ C∥X − Y∥.

Thus λ−1(X) is strongly (aπ)-regular along λ−1(Y) near X̄, as claimed.

Next moving onto conditions (bπ⋄) and strong (bπ⋄), we compute

⟨V, X − Y⟩ = ⟨v, λ(X) − π(λ(X))⟩.

The claimed results now follow immediately by noting ∥λ(X)− π(λ(X))∥ = ∥X − Y∥. □

Combining Theorems 3.5.3, 3.2.3, and spectral preservation of smoothness [55]

yields the main result of the section.
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Proposition 3.5.4 (Spectral Lifts). Let X̄ ∈ Sn be a symmetric matrix and set x̄ = λ(X̄).

Consider two locally closed symmetric sets X,Y ⊆ Rn such that Y contains x̄. Then the

following are true.

1. If Y is a C2-smooth manifold at x̄ and X is strongly (a)-regular along Y near

x̄, then λ−1(Y) is a C2-smooth manifold at X̄ and X is strongly (a)-regular along

λ−1(X) near X̄. The analogous statement holds for (b⋄).

2. If Y is a C3-smooth manifold at x̄ and X is both strongly (a) and strongly (b)

regular along Y near x̄, then λ−1(Y) is a C3-smooth manifold at X̄ and X is both

strongly (a) and strongly (b) regular along λ−1(X) near X̄.

Proof. This follows directly by combining Theorems 3.5.3, 3.2.3, and spectral preser-

vation of smoothness [55, Theorem 2.7] yields the main result of the section. □

All the results in this section extend in a standard way (e.g. [53]) to orthogonally

invariant sets of rectangular matrices X ∈ Rm×n. Namely, one only needs to replace

(i) eigenvalues λi(X) with singular values σi(X), (ii) symmetric sets X with absolutely

symmetric sets (i.e. those invariant under all signed permutations of coordinates), and

(iii) spectral sets Q with those that are in variant under the map X 7→ UXV⊤ for any

orthogonal matrices U ∈ O(m) and V ∈ O(n).

3.6 Regularity of functions along manifolds

The previous sections developed basic examples and calculus rules for the four basic reg-

ularity conditions. In this section we interpret these results for functions through their

42



epigraphs. We begin with the following lemma, which follows directly from Proposi-

tions 3.3.1, 3.3.3, and 3.3.5.

Lemma 3.6.1 (Basic examples). Consider a function f : E → R ∪ {∞}, a set M ⊂

dom f , and a point x̄ ∈ M. The following statements are true.

1. If f is a sublinear function andM = {x : f (x) = − f (−x)} is its lineality space,

then f is both strongly (a) and strongly (b=) regular alongM near x̄.

2. If f is convex,M is locally affine near x̄, and f restricted toM is an affine function

near x̄, then f is strongly (a)-regular alongM near x̄.

3. If f is weakly convex and locally Lipschitz near x̄ and the subdifferential map

x 7→ ∂ f (x) is inner-semicontinuous onM near x̄, then f is (b=)-regular alongM

near x̄.

The baic calculus rule established in Theorem 3.4.1 yields the following chain rule.

Theorem 3.6.2 (Chain rule). Consider a Cp-smooth map c : Y → E and a closed func-

tion h : E→ R∪ {∞}. Fix a setM ⊂ E and a point x̄ with c(x̄) ∈ M. Suppose thatM is

a C1 manifold around c(x̄), the restriction h|
M

is C1-smooth near x̄, and transversality

holds:

NM(c(x̄)) ∩ Null (∇c(x̄)∗) = {0}. (3.6.1)

Define the composition f (x) = h(c(x)) and the set L := c−1(M). The following are true.

1. If h is (a)-regular alongM near c(x̄) then f is (a)-regular along L near x̄.

2. If h is (a)-regular and (b⋄)-regular alongM near c(x̄), then f is (b⋄)-regular along

L near x̄.

If in additionM is a C2 manifold around c(x̄) and the restriction h|
M

is C2-smooth near

x̄, then the following are true.
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3 If h is strongly (a)-regular alongM, then f is strongly (a)-regular along L near

x̄.

4 If h is both (a)-regular and strongly (b⋄)-regular along M at c(x̄), then f is

strongly (b⋄)-regular along L near x̄.

Proof. First, the transversality condition (3.6.1) classically guarantees thatL is a smooth

manifold around x̄ with the same order of smoothness asM. Moreover, for any x ∈ L,

we may write f (x) = h(c(x)) = (h|
M
◦ c)(x). Therefore the restriction of f to L has

the same order of smoothness as h|
M

. Next, observe that we may write epi f = {(x, r) :

(c(x), r) ∈ epi h}. Thus in the notation of Theorem 3.4.1, settingX = epi h,Y = gph h|
M

,

and F(x, r) = (c(x), r)), we may write

epi f = F−1(X) and gph f |
L
= F−1(Y).

A quick computation shows that the transversality condition (3.4.1) follows from (3.6.1).

An application of Theorem 3.4.1 completes the proof. □

An interesting class of examples where the chain rule is useful consists of decom-

posable functions [5], which serve as functional analogues of cone reducible sets. A

function f : E → R ∪ {∞} is called properly Cp decomposable at x̄ as h ◦ c if on a

neighborhood of x̄ it can be written as

f (x) = f (x̄) + h(c(x)),

for some Cp-smooth mapping c : E → Y satisfying c(x̄) = 0 and some proper, closed

sublinear function h : Y→ R satisfying the transversality condition:

lin(h) + Range(∇c(x̄)) = Y.
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It is shown in [5, p 683] that if f : E→ R∪ {∞} is properly Cp decomposable at x̄ as

h ◦ c, then the set L = c−1(lin(h)) is a Cp-active manifold around x̄ for any subgradient

v ∈ ri ∂ f (x̄). The following is immediate from Lemma 3.6.1 and Theorem 3.6.2.

Corollary 3.6.3 (Decomposable functions are regular). Suppose that a function f is

properly C1 decomposable as h ◦ c around x̄ and define L = c−1(lin(h)). Then f is both

(a) and (b=) regular along L near x̄. Moreover, if f is properly C2-decomposable as

h ◦ c around x̄, then f is strongly (a) and strongly (b=) regular along L near x̄.

The chain rule can be used to obtain a variety of other calculus rules, including

the sum rule. To see this, note that regularity of functions fi along sets Mi directly

implies regularity of the separable function f (y1, . . . , yk) =
∑k

i=1 fi(yi) along the product

set
∏k

i=1Mi. Then a general sum rule for f (x) =
∑k

i=1 fi(x) follows from applying the

chain rule (Theorem 3.6.2) to the decomposition f (x) = h(c(x)) with the linear map

c(x) = (x, . . . , x) and the separable function h(y1, . . . , yk) =
∑n

i=1 fi(yi). For the sake of

brevity, we leave details for the reader.

We end the section with an extension of the material in Section 3.5 to the functional

setting. Namely, a function f : Rn → R ∪ {∞} is called symmetric if equality f (πx) =

f (x) holds for all x ∈ Rn and all π ∈ Π(n). A function f : Sn → R∪{∞} is called spectral

if it satisfies F(UXU⊤) = F(X) for all X ∈ Sn and all U ∈ O(n). It is straightforward to

see that any spectral function F decomposes as F = f ◦ λ for some symmetric function

f . Explicitly, we may take f as the diagonal restriction f (x) = (F ◦ Diag)(x). The

subdifferentials of F and f are related by the expressions [57]:

∂F(X) =
{
UDiag(y)UT : y ∈ ∂ f (λ(X)), U ∈ OX

}
. (3.6.2)

where for any matrix X, we define the set of diagonalizing matrices

OX := {U ∈ O(n) : X = UDiag(λ(X))UT }.
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The following theorem shows that the regularity of a symmetric function f is inherited

by the spectral function F = f ◦ λ.

Theorem 3.6.4 (Spectral Lifts). Consider a symmetric function f : Rd → R ∪ {∞} and

let M be a symmetric C2-manifold containing x̄. Suppose that f is locally Lipschitz

continuous around x̄ and the restriction f |
M

is C2-smooth near x̄. Fix now a matrix X̄

satisfying x̄ := λ(X̄). Then if f is (a)-regular alongM around x̄, then f ◦λ is (a)-regular

along λ−1(M) near X̄. The analogous statement holds for strong (a)-regularity and (b⋄)-

regularity. IfM is in addition C3 smooth, then the analogous statement holds for strong

(b⋄)-regularity.

Proof. First, [55, Theorem 2.7] shows thatM is a Cp manifold (with p ≥ 2) around x̄ if

and only if λ−1(M) is a Cp manifold around X̄. The analogous statement is true for the

restriction of f toM and for the restriction of f ◦ λ to λ−1(M).

The claim about (a)-regularity follows immediately from Lemma 3.1.1. The main

idea for verifying the rest of the properties is to instead focus on the analogous condi-

tions with respect to the retraction π onto gph F|λ−1(M) defined by the expression

π(X, r) = (Pλ−1(M)(X), F(Pλ−1(M)(X))).

To this end, suppose that f is strongly (a)-regular near x̄. We claim that epi F is strongly

(aπ) regular along gph f |
M

near (X̄, F(X̄)). To see this, consider a matrix X ∈ Sn near

X̄ and set Y = Pλ−1(M)(X). Let Z ∈ ∂F(X) be arbitrary. Exactly the same argument as

in the proof of Theorem 3.5.3 shows that there exists a matrix W ∈ ∂F(Y) satisfying

∥Z −W∥F ≤ C∥X − Y∥F , where C is a fixed constant independent of X and Y . It follows

immediately that epi F is strongly (aπ) regular along gph f |
M

near (X̄, F(X̄)). An appli-

cation of Theorem 3.2.3 therefore guarantees that F is strongly (a) regular along λ−1(M)

near X̄. The claims about (b⋄) and strong (b⋄) properties follow similarly by using the
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characterization in Theorem 3.1.4 and arguing regularity with respect to the retraction

π. We leave the details for the reader. □

3.7 Generic regularity along active manifolds

How can one justify the use of a particular regularity condition? One approach, high-

lighted in the previous sections, is to verify the conditions for certain basic examples

and then show that they are preserved under transverse smooth deformations. Strati-

fication theory adapts another viewpoint, wherein a regularity condition between two

manifolds is considered acceptable if reasonable sets (e.g. semialgebraic, subanalytic

or definable) can always be partitioned into finitely many smooth manifolds so that the

regularity condition holds along any two “adjacent” manifolds. See the survey [42] for

an extensive discussion.

To formalize this viewpoint, we begin with a definition of a stratification.

Definition 3.7.1 (Stratification). A Cp-stratification (p ≥ 1) of a set Q ⊂ E is a partition

of Q into finitely many Cp manifolds, called strata, such that any two strata X and Y

satisfy the implication:

Y ∩ clX , ∅ =⇒ Y ⊂ clX.

A stratum Y is said to be adjacent to a stratum X if the inclusion Y ⊂ clX holds. If the

strata are definable in some o-minimal structure, the stratification is called definable.

Thus a stratification of Q is simply a partition of Q into smooth manifolds so that the

closure of any stratum is a union of strata. Stratifications such that any pair of adjacent

strata are strongly (a)-regular are called Verdier stratifications.
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Definition 3.7.2. A Cp Verdier stratification (p ≥ 1) of a set Q ⊂ E is a Cp stratification

of Q such that any stratum X is strongly (a)-regular along any stratum Y contained in

clX.

It is often useful to refine stratifications. To this end, a stratification is compatible

with a collection of sets Q1, . . . ,Qk if for every index i, every stratumM is either con-

tained in Qi or is disjoint from it. The following theorem, due to Ta Le Loi [49], shows

that definable sets admit a Verdier stratification, which is compatible with any finite

collection of definable sets.

Theorem 3.7.3 (Verdier stratification). For any p ≥ 1, any definable set Q ⊂ E ad-

mits a definable Cp Verdier stratification. Moreover, given finitely many definable sub-

sets Q1, . . . ,Qk, we may ensure that the Verdier stratification of Q is compatible with

Q1, . . . ,Qk.

The analogous theorem for condition (b=) (and therefore condition (a)) was proved

earlier; see the discussion in [58]. The strong (b=) condition does not satisfy such de-

composition properties. It can fail even relative to a single point of a definable set in R2,

as Example 3.7.1 shows. Nonetheless, as we have seen in previous sections, it does hold

in a number of interesting settings in optimization (e.g. for cone reducible sets along the

active manifold).

Example 3.7.1 (Strong (b) is not generic). Define the curve γ(t) = (t, t3/2) in R2. Let X

be the graph of γ and let Y be the origin in R2. Then a quick computation shows that a

unit normal u(t) ∈ NX(γ(t)) is given by (−2
3

√
t, 1)/

√
1 + 4

9 t and therefore

〈
u(t),

γ(t)
∥γ(t)∥2

〉
=

t3/2

3(t2 + t3)
√

1 + 4
9 t
→ ∞ as t → 0.

Therefore, the strong condition (b=) fails for the pair (X,Y) at the origin.
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Applying Theorem 3.7.3, to epigraphs immediately yields the following.

Theorem 3.7.4 (Verdier stratification of a function). Consider a definable function

f : E → R ∪ {∞} that is continuous on its domain. Then for any p > 0, there exists

a partition of dom f into finitely many Cp-smooth manifolds such that f is Cp-smooth

on each manifoldM, and f is strongly (a)-regular and (b=)-regular along any manifold

M.

Proof. We first form a nonvertical stratification {Mi} of gph f , guaranteed to exist

by [46]. Choose any integer p ≥ 2. Restratifying using Theorem 3.7.3 yields a non-

vertical Cp-Verdier stratification {K j} of gph f . Let X j denote the image of K j under

the canonical projection (x, r) 7→ x. As explained in [46], each set X j is a Cp-smooth

manifolds, the function f restricted to X j is Cp-smooth, and equality gph f |
X j
= K j

holds.

Consider now an arbitrary stratum K j. It remains to verify that epi f is strongly (a)-

regular along K j. This follows immediately from the fact that there are finitely many

strata and that the inclusion Nepi f (X) ⊂ NKl(X) holds for any index l and any X ∈ Kl. □

In this thesis, we will be interested in sets that are regular along a particu-

lar manifold—the active one. Theorem 3.7.3 quickly implies that critical points of

“generic” definable functions lie on an active manifold along which the objective func-

tion is strongly (a)-regular.

Theorem 3.7.5 (Regularity at critical points of generic functions). Consider a closed

definable function f : E → R ∪ {∞}. Then for almost every direction v ∈ E in the sense

of Lebesgue measure, the perturbed function fv := f (x)−⟨v, x⟩ has at most finitely many

limiting critical points, each lying on a unique Cp-smooth active manifold and along

which the function fv is strongly (a)-regular.
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This theorem is a special case of a more general result that applies to structured

problems of the form

min
x

g(x) + h(x) (3.7.1)

for definable functions g and h. Algorithms that utilize this structure, such as the proxi-

mal subgradient method, generate a sequence that may convergence to composite Clarke

critical points x̄, meaning those satisfying

0 ∈ ∂cg(x̄) + ∂ch(x̄).

This condition is typically weaker than 0 ∈ ∂c(g+ h)(x̄). Points x̄ satisfying the stronger

inclusion 0 ∈ ∂g(x̄) + ∂h(x̄) will be called composite limiting critical.

The following theorem shows that under a reasonably rich class of perturbations, the

problem (3.7.1) admits no extraneous composite limiting critical points. Moreover each

of the functions involved admits an active manifold along which the function is strongly

(a)-regular. The proof is a small modification of [59, Theorem 5.2].

Theorem 3.7.6 (Regularity at critical points of generic functions). Consider closed de-

finable functions g : E→ R∪{∞} and h : E→ R∪{∞} and define the parametric family

of problems

min
x

fy,v(x) = g(x) − ⟨v, x⟩ + h(x + y) (3.7.2)

Define the tilted function gv(x) = g(x) − ⟨v, x⟩. Then there exists an integer N > 0

such that for almost all parameters (v, y) in the sense of Lebesgue measure, the prob-

lem (3.7.2) has at most N composite Clarke critical points. Moreover, for any limiting

composite critical point x̄, there exists a unique vector

λ̄ ∈ ∂h(x̄ + y) satisfying − λ̄ ∈ ∂gv(x̄),

and the following properties are true.
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1. The inclusions λ̄ ∈ ∂̂h(x̄ + y) and −λ̄ ∈ ∂̂gv(x̄) hold.

2. gv admits a Cp active manifoldM at x̄ for −λ̄ and h admits a Cp active manifold

K at x̄ + y for λ̄, and the two manifolds intersect transversally:

NK (x̄) ∩ NM(x̄) = {0}.

3. x̄ is either a local minimizer of fy,v or a Cp strict active saddle point of fy,v.

4. gv is strongly (a)-regular alongM at x̄ and h is strongly (a)-regular along K at

x̄ + y.

Proof. All the claims, except for 3 and 4, are proved in [59]; note, that in that work,

active manifolds are defined using the limiting subdifferential, but exactly the same

arguments apply under the more restrictive Definition 2.4.1. Claim 3 is proved in [60,

Theorem 5.2]3; it is a direct consequence of the classical Sard’s theorem and existence of

stratifications. Claim 4 follows from a small modification to the proof of [59]. Namely,

the first-bullet point in the proof may be replaced by “g is Cp-smooth and strongly (a)

regular on X j
i (Ûi) and h is Cp-smooth and strongly (a)-regular on F j

i (Ûi)”. □

3weak convexity is invoked in the theorem statement but is not necessary for the result.
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CHAPTER 4

AVOIDING SADDLE POINTS IN SUBGRADIENT-BASED ALGORITHMS

4.1 Introduction

The subgradient method is the workhorse procedure for finding minimizers of Lipschitz

continuous functions f on Rn. One common variant, and the one we focus on here,

proceeds using the update

xk+1 = xk − αk∇ f (xk) + αkνk, (4.1.1)

for some sequence αk > 0 and a mean zero noise vector νk chosen by the user. As long

as νk is absolutely continuous with respect to the Lebesgue measure, the algorithm will

only encounter points at which f is differentiable, and therefore the recursion (4.1.1)

is well defined. The typical choice of αk, and one that is well-grounded in theory, is

proportional to k−γ for γ ∈ (1/2, 1). The subgradient method is core to a wide array of

tasks in computational mathematics and applied sciences, such as in statistics, machine

learning, control, and signal processing. Despite its ubiquity and the striking simplicity

of the evolution equation (4.1.1), the following question remains open.

Is there a broad class of nonsmooth and nonconvex functions for which the

subgradient dynamics (4.1.1) are sure to converge only to local

minimizers?

In order to better situate the question, let us look at the analogous question for

smooth functions, where the answer is entirely classical. Indeed, the seminal work

of Pemantle [61] shows that the subgradient method applied to a Morse function either
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diverges or converges to a local minimizer. Conceptually, the nondegeneracy of the Hes-

sian stipulated by the Morse assumption ensures that around every extraneous critical

point, the function admits a direction of negative curvature. Such directions ensure that

the stochastic process (4.1.1) locally escapes any neighborhood of the extraneous criti-

cal point. Aside from being generic, the Morse assumption or rather the slightly weaker

strict saddle property is known to hold for a wealth of concrete statistical estimation and

learning problems, as shown for example in [10–14]. Going beyond smooth functions

requires new tools. In particular, a positive answer is impossible for general Lipschitz

functions, since generic (in Baire sense) Lipschitz functions may have highly oscilla-

tory derivatives [62, 63]. Therefore one must isolate some well-behaved function class

to make progress. In this chapter, we focus on Lipschitz functions that are semialge-

braic, or more generally definable in an o-minimal structure [58]. The class of definable

functions is virtually exhaustive in contemporary applications of optimization and has

been the subject of intensive research over the past decade. The following is an informal

statement of one of our main results.

Theorem 4.1.1 (Informal). Let f be a function that is Lipschitz continuous, subdif-

ferentially regular, and is definable in some o-minimal structure. Then for a full-

measure set of vectors v ∈ Rn, the subgradient method applied to the perturbed function

fv(x) = f (x) − ⟨v, x⟩ either diverges or converges to a local minimizer of fv.

Subdifferential regularity is a common assumption in nonsmooth analysis [28, 31]

and is in particular valid for weakly convex functions. Weakly convex functions are

those for which the assignment x 7→ f (x)+ ρ

2∥x∥
2 is convex for some ρ ∈ R; equivalently,

these are exactly the functions whose epigraph has positive reach in the sense of Fed-

erer [36]. This function class is broad and includes convex functions, smooth functions

with Lipschitz continuous gradient, and any function of the form f (x) = h(c(x)) + r(x),

where h is a Lipschitz convex function, r is a convex function taking values in R ∪ {∞},
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and c(·) is a smooth map with Lipschitz Jacobian. Classical literature highlights the

importance of such composite functions in optimization [5, 63–66], while recent ad-

vances in statistical learning and signal processing have further reinvigorated the prob-

lem class. For example, nonlinear least squares, phase retrieval [67–69], robust principal

component analysis [70,71], and adversarial learning [72,73] naturally lead to compos-

ite/weakly convex problems. We refer the reader to the recent expository articles [37,74]

for more details on this problem class and its numerous applications.

Though our arguments make heavy use of subdifferential regularity, we conjecture

that the conclusion of Theorem 4.1.1 is valid without this assumption. We note in pass-

ing that in the smooth setting, the noiseless gradient method (νk ≡ 0) applied to a Morse

function is also known to converge only to local minimizers, as long as it is initialized

outside of a certain Lebesgue null set [75, 76]. It is unclear how to extend this class of

results to the nonsmooth setting, without explicitly incorporating noise injection νt as

we do here.

4.1.1 Main ingredients of the proof.

As the starting point, let us recall the baseline guarantee from [60] for the subgradient

method when applied to a semialgebraic function f , or more generally one definable in

an o-minimal structure. The main result of [77] shows that for such functions, almost

surely, every limit point x̄ of the subgradient sequence {xk} is Clarke critical. Explicitly,

this means that the zero vector lies in the Clarke subdifferential

∂c f (x̄) = conv
{
lim
i→∞
∇ f (yi) : yi ∈ dom (∇ f ), yi → x̄

}
.

Therefore, our task reduces to isolating geometric conditions around extraneous Clarke

critical points which facilitate local escape of the subgradient sequence.
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The main difficulty in contrast to the smooth setting is that there is no simple ana-

logue of the Morse lemma that can reduce a nonsmooth function to a common functional

form by a diffeomorphism. Instead, a fundamentally different idea is required. Our argu-

ments focus on a certain smooth manifold that captures the “nonsmooth activity” of the

function near a critical point. Formal models of such manifolds have appeared through-

out the optimization literature, notably in [1–6]. Following [6], a smooth embedded

submanifoldM of Rd is called active for f at x̄ if (i) the restriction of f toM is smooth

near x̄, and (ii) the subgradients w ∈ ∂c f (x) are uniformly bounded away from zero at

all points x ∈ Rn \M near x̄. For subdifferentially regular functions, such manifolds are

geometrically distinctive in that f varies smoothly along M and sharply in directions

normal toM. As an illustration, Figure 4.1a depicts a nonsmooth function, having the

y-axis as the active manifold around the the critical point (origin). A critical point x̄ is

called an active strict saddle if f decreases quadratically along some smooth path in the

active manifoldM emanating from x̄. Returning to Figure 4.1, the origin is indeed an

active strict saddle since f has negative curvature along the y-axis at the origin. Our

focus on active manifolds and active saddles is justified because these structures are in

a sense generic for definable functions. Indeed, the earlier work [59, 60] shows that for

a definable function f , there exists a full-measure set of perturbations v ∈ V such that

every critical point x̄ of the tilted function fv(x) = f (x) − ⟨v, x⟩ lies on a unique active

manifold and is either a local minimizer or an active strict saddle.

The importance of the active manifold for subgradient dynamics is best illustrated in

continuous time by looking at the trajectories of the differential inclusion γ̇ ∈ −∂c f (γ).

Returning to the running example, Figure 4.1b shows that the set of initial conditions that

are attracted to the critical point by subgradient flow (x-axis) has zero measure. It ap-

pears therefore that although the subgradient method never reaches the active manifold,

it nonetheless inherits desirable properties from the function along the manifold, e.g.,
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(a) The function f (x, y)
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(b) Subgradient flow γ̇ ∈ −∂c f (γ)

Figure 4.1: The y-axis is an active manifold for the function f (x, y) = |x| − y2 at the
origin.

saddle point avoidance. In this chapter, we rigorously verify this general phenomenon.

Our central observation is that under two mild regularity conditions on f , which

we will describe shortly, the subgradient dynamics can be understood as an inexact

Riemannian gradient method on the restriction of f toM. Explicitly, we will find that

the “shadow sequence” yk = PM(xk), satisfies the recursion

yk+1 = yk − αk(∇M f (yk) + PTM(yk)(νk)) + o(αk), (4.1.2)

near x̄, where PM(·) is the nearest-point projection ontoM, PTM(yk) is the projection onto

the tangent space ofM at yk, and ∇M f denotes the covariant gradient of f alongM. 1

The “smooth” dynamic equation (4.1.2) will allow us to prove that the shadow iterates

yk eventually escape from any small neighborhood around an active strict saddle x̄ of f ,

so does xk.

The validity of (4.1.2) relies on two regularity properties of f that we developed in

Chapter 3. We describe them here for the reader’s convenience.

1The covariant gradient ∇M f (y) is the projection onto TM(y) of ∇ f̂ (y) where f̂ is any C1 smooth
function defined on a neighborhood U of x̄ and that agrees with f on U ∩M.
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Regularity property I: aiming towards the manifold. The first condition we require

is simply that near the critical point, subgradients are well aligned with directions point-

ing towards the nearest point on the manifold. Formally, we model this condition with

the proximal aiming inequality:

⟨v, x − PM(x)⟩ ≥ c · dist(x,M) for all x near x̄ and v ∈ ∂ fc(x). (4.1.3)

for some constant c > 0. It is not hard to see that if f is subdifferentially regular and

M is its active manifold, then proximal aiming (4.1.3) is implied by the (b)-regularity

condition:

f (y) ≥ f (x) + ⟨v, y − x⟩ + o(∥y − x∥) as x→ x̄, y
M
→ x̄, with v ∈ ∂c f (x). (4.1.4)

We refer readers to Theorem 3.1.4 and Corollary 3.1.5 for details. This estimate stip-

ulates that subgradients v ∈ ∂c f (x) yield affine minorants of f up to first-order near x̄,

but only when comparing points x and y ∈ M. This condition is automatically true for

weakly convex functions and holds in much broader settings as we saw in Chapter 3.

Regularity property II: subgradients on and off the manifold. The second regu-

larity property posits that subgradients on and off the manifold are aligned in tangent

directions up to a linear error, that is, there exists C > 0 satisfying

∥PTM(y)(∂c f (x) − ∇M f (y))∥ ≤ C · ∥x − y∥ for all x ∈ Rd and y ∈ M near x̄. (4.1.5)

Whenever (4.1.5) holds, we say that f is strongly (a)-regular alongM. We refer readers

to Theorem 3.1.6 for details.

Reassuringly, typical functions, whether built from concrete structured examples or

from unstructured linear perturbations, admit an active manifold around each critical

point along which the objective function is both (b) and strongly (a) regular.
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In the final stages of completing the work [47] which this chapter is based on, we

became aware of the concurrent and independent work [78]. The two papers, share

similar core ideas, rooted in strong (a) regularity and proximal aiming. However, the

proof of the main result in [78]—avoidance of saddle points—fundamentally relies on a

claimed equivalence in [79, Theorem 4.1], which is known to be false. The most recent

draft on arxiv takes a different approach that does not rely on [79, Theorem 4.1].

4.1.2 Outline of the chapter.

Section 4.2 introduces the algorithms that we study in the chapter and the relevant as-

sumptions. Section 4.3 discusses the two pillars of our algorithmic development (aiming

and strong (a)-regularity) and the dynamics of the shadow iteration. Section 4.4 presents

the main results of the chapter on saddle-point avoidance. Most of the technical proofs

appear in Sections 4.5 and 4.6, respectively.

4.2 Algorithm and main assumptions

In this chapter, we introduce our main algorithmic consequences of the strong (a) and

(b⋄) regularity properties developed in the previous sections. Setting the stage, through-

out we consider a minimization problem

min
x∈Rd

f (x), (4.2.1)

where f : Rd → R∪{+∞} is a closed function. The function f may enforce constraints or

regularization; it may also be the population loss of a stochastic optimization problem.

In order to simultaneously model algorithms which exploit such structure, we take a
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fairly abstract approach, assuming access to a generalized gradient mapping for f :

G : R++ × dom f × Rd → Rd

We then consider the following stochastic method: given x0 ∈ R
d, we iterate

xk+1 = xk − αkGαk(xk, νk), (4.2.2)

where αk > 0 is a control sequence and νk is stochastic noise. We will place relevant

assumptions on the noise νk later in Section 4.3. The most important example of (4.2.2),

valid for locally Lipschitz functions f , is the stochastic subgradient method:

xk+1 = xk − αk(wk + νk) where wk ∈ ∂c f (xk),

In this case, the mapping G satisfies

Gα(x, ν) ∈ ∂c f (x) + ν for all x, ν ∈ Rd and α > 0. (4.2.3)

More generally, G may represent a stochastic projected gradient method or a stochastic

proximal gradient method—two algorithms we examine in detail in Section 4.2.1.

The purpose of this chapter is to understand how iteration (4.2.2) is affected by the

existence of “active manifolds”M contained within the domain of f . For this, we posit

a tight interaction between G and the active manifold M, described in the following

assumption.

Assumption A (Strong (a) and aiming). Fix a point x̄ ∈ dom f . We suppose that there

exist constants C, µ > 0, a neighborhood U of x̄, and a C3 manifold M ⊆ dom f

containing x̄ such that the following hold for all ν ∈ Rd and α > 0, where we set

U f := U ∩ dom f .

(A1) (Local Boundedness) We have

sup
x∈U f

∥Gα(x, ν)∥ ≤ C(1 + ∥ν∥).
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(A2) (Strong (a)) The function f is C2 onM and for all x ∈ U f , we have

∥PTM(PM(x))(Gα(x, ν) − ∇M f (PM(x)) − ν)∥ ≤ C(1 + ∥ν∥)2(dist(x,M) + α).

(A3) (Proximal Aiming) For x ∈ U f tending to x̄, we have

⟨Gα(x, ν) − ν, x − PM(x)⟩ ≥ µ · dist(x,M) − (1 + ∥ν∥)2(o(dist(x,M)) +Cα).

Some comments are in order. Assumption (A1) is similar to classical Lipschitz as-

sumptions and ensures the steplength can only scale linearly in ∥ν∥. Assumption (A2) is

the natural analogue of strong (a) regularity for the operator Gα(x, ν). It ensures that the

shadow sequence yk = PM(xk) locally remains an inexact stochastic Riemannian gra-

dient sequence with implicit retraction. Assumption (A3) ensures that after subtracting

the noise from Gαk(xk, νk), the update direction xk+1 − xk locally points towards the man-

ifoldM. We will later show that this ensures the iterates xk approach the manifoldM

at a controlled rate. Finally we note in passing that the power of (1 + ∥ν∥) in the above

expressions must be at least 2 for common iterative algorithms to satisfy Assumption A;

one may also take higher powers, but this requires higher moment bounds on ∥νk∥. Be-

fore making these results precise in Section 4.3, we first formalize our statements about

the subgradient method and introduce several examples.

The rest of the section is devoted to examples of algorithms satisfying Assump-

tion A.

4.2.1 Stochastic subgradient method

The most immediate example of operator G arises from the subgradient method applied

to a locally Lipschitz function f . In this setting, any measurable selection s : Rd → R of

60



∂c f (x) gives rise to a mapping

Gα(x, ν) = s(x) + ν, (4.2.4)

which is independent of α. Then Algorithm (4.2.2) is the classical stochastic subgradient

method:

xk+1 = xk − αk(s(xk) + νk). (4.2.5)

Let us place the following assumption on f , which we will shortly show implies As-

sumption A.

Assumption B (Assumptions for the subgradient mapping). Let f : Rd → R be a func-

tion that is locally Lipschitz continuous around a point x̄ ∈ Rd. Let M ⊆ X be a C3

manifold containing x̄ and suppose that f is C2 onM near x.

(B1) (Strong (a)) The function f is strongly (a)-regular alongM near x̄.

(B2) (Proximal aiming) There exists µ > 0 such that the inequality holds

⟨v, x − PM(x)⟩ ≥ µ · dist(x,M) for all x near x̄ and v ∈ ∂c f (x). (4.2.6)

Note that Corollary 3.1.5 shows that the aiming condition (B2) holds as long asM

is an active manifold for f at x̄ satisfying 0 ∈ ∂̂ f (x̄) and f is (b≤)-regular alongM near

x̄. The following proposition follows immediately from Corollary 3.1.5.

Proposition 4.2.1 (Subgradient method). Assumption B implies Assumption A with the

map G defined in (4.2.4).

Thus, all three properties arise from reasonable assumptions on the function f , as

discussed in the previous sections. Moreover, for definable functions, they hold gener-

ically, as the following corollary shows. Indeed, this is a direct consequence of Theo-

rem 3.7.6.
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Corollary 4.2.2. Suppose that f : Rd → R is locally Lipschitz and definable in o-

minimal structure. Then there exists a finite N such that for a generic set of v ∈ Rd

the tilted function fv(x) := f (x) − ⟨v, x⟩ has at most N Clarke critical points. Moreover,

each limiting critical point x̄ is in fact Fréchet critical and satisfies the following.

1. The function f and the subgradient mapping (4.2.5) satisfy Assumption A at x̄

with respect to some C3 active manifoldM.

2. The limiting critical point x̄ is either a local minimizer or an active strict saddle

point of f .

4.2.2 Stochastic projected subgradient method

Throughout this section let g : Rd → R be a locally Lipschitz function and let X be a

closed set and consider the constrained minimization problem

min f (x) := g(x) + δX(x).

A classical algorithm for solving this problem is known as the stochastic projected sub-

gradient method. Each iteration of the method updates

xk+1 ∈ PX(xk − αk(vk + νk)) where vk ∈ ∂cg(xk) (4.2.7)

This algorithm can be reformulated as an instance of (4.2.2). Indeed, let sX : Rd → Rd

be a measurable selection of PX, let sg : Rd → Rd be a measurable selection of ∂cg, and

define the generalized gradient mapping

Gα(x, ν) :=
x − sX(x − α(sg(x) + ν))

α
for all x ∈ Rd, ν ∈ Rd, α > 0. (4.2.8)

Evidently, the update rule (4.2.2) reduces to (4.2.7).
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In order to ensure Assumption A for the stochastic projected subgradient method,

we introduce the following assumptions on g and X.

Assumption C (Assumptions for the projected gradient mapping). Let f := g + δX,

where X is a closed set and g : Rd → R is a locally Lipschitz continuous function. Fix

x̄ ∈ Rd and letM ⊆ X be a C3 manifold containing x̄ and suppose that f is C2 onM

near x̄.

(C1) (Strong (a)) The function g and set X are strongly (a)-regular alongM at x̄.

(C2) (Proximal aiming) There exists µ > 0 such that the inequality holds

⟨v, x − PM(x)⟩ ≥ µ · dist(x,M) for all x ∈ X near x̄ and v ∈ ∂cg(x). (4.2.9)

(C3) (Condition (b)) The set X is (b≤)-regular alongM at x̄.

Note that Corollary 3.1.5 shows that the aiming condition (C2) holds as long as

M is an active manifold for f at x̄ satisfying 0 ∈ ∂̂ f (x̄) and f is (b≤)-regular along

M at x̄.2 The following proposition shows that Assumption C is sufficient to ensure

Assumption A; we defer the proof to Appendix 7.1.2 since it’s fairly long.

Proposition 4.2.3 (Projected subgradient method). Assumption C implies Assumption A

for the map G defined in (4.2.8).

Given this proposition, an immediate question is whether Assumption C holds gener-

ically under for problems that are definable in an o-minimal structure. The following
2Corollary 3.1.5 shows that there exists a constant c > 0 such that for any δ > 0, the estimate

⟨v, x − PM(x)⟩ ≥ (c − δ
√

1 + ∥v∥2) · dist(x,M), (4.2.10)

holds for all x ∈ X near x̄ and for all v ∈ ∂ f (x). In particular, due to the inclusion ∂̂g(x) + N̂X(x) ⊂ ∂̂ f (x),
we may choose any v ∈ ∂̂g(x) in (4.2.10). Therefore, taking into account that g is locally Lipschitz, we
deduce that there is a constant µ such that ⟨v, x − PM(x)⟩ ≥ µ · dist(x,M) for all x ∈ X near x̄ and for all
v ∈ ∂̂g(x). Taking limits and convex hulls, the same statement holds for all v ∈ ∂cg(x).
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corollary, which is an immediate consequence of Proposition 4.2.3, Theorem 3.7.6, and

Corollary 3.1.5, shows that the answer is yes.

Corollary 4.2.4. Suppose that f = g + δX, where X ⊆ Rd is closed and g : Rd → R is

locally Lipschitz, and both X and g are definable in an o-minimal structure. Then there

exists a finite N such that for a generic set of v,w ∈ Rd the tilted function fv,w(x) :=

g(x+w)+ δX(x)− ⟨v, x⟩ has at most N composite Clarke critical points. Moreover, each

composite limiting critical point x̄ is in fact Fréchet critical and satisfies the following,

1. The function f and the projected subgradient mapping G define in (4.2.8) satisfy

Assumption A at x̄ with respect to some C3 active manifoldM.

2. The composite limiting critical point x̄ is either a local minimizer or an active

strict saddle point of f .

In the above corollary, the qualification composite critical points, as defined in The-

orem 3.7.6, is important, since the projected subgradient method is only known to con-

verge to such points.

4.2.3 Proximal gradient method

Throughout this section let g : Rd → R be a C1 function and let h : Rd → R ∪ {+∞} be a

closed function. We then consider the minimization problem

min
x∈Rd

f (x) := g(x) + h(x).

A classical algorithm for solving this problem is the stochastic proximal gradient

method. Each iteration of the method solves the proximal problem:

xk+1 ∈ argmin
x∈Rd

{
h(x) + ⟨∇g(xk) + νk, x − xk⟩ +

1
2αk
∥x − xk∥

2
}
. (4.2.11)
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This algorithm can be reformulated as an instance of (4.2.2). Indeed, let s : R++ ×Rd →

Rd be a measurable selection of the proximal map (x, α) 7→ argminy{h(y) + 1
2α∥y − x∥2}

and consider the mapping G defined by

Gα(x, ν) =
x − sα(x − α(∇g(x) + ν))

α
for all x ∈ Rd, ν ∈ Rd and α > 0. (4.2.12)

Evidently, the update rule (4.2.2) is equivalent to (4.2.11).

In order to ensure Assumption A for the stochastic proximal gradient method, we

introduce the following assumptions on g and h.

Assumption D (Assumptions for the proximal gradient mapping). Let f := g+h, where

g : Rd → R is C1 and h : Rd → R ∪ {+∞} is closed. Denote X := dom h and letM ⊆ X

be a C3 manifold containing some point x̄ and suppose that f is C2 onM near x̄.

(D1) (Lipschitz gradient/boundedness) The gradient ∇g Lipschitz near x̄. Moreover,

there exists C > 0 such that ∥∇g(x)∥ ≤ C(1 + ∥x∥) for all x ∈ X.

(D2) (Lipschitz proximal term) The function h is Lipschitz on X.

(D3) (Strong (a)) The function h is strongly (a)-regular alongM at x̄.

(D4) (Proximal Aiming) There exists µ > 0 such that the inequality holds

⟨v, x − PM(x)⟩ ≥ µ · dist(x,M) − (1 + ∥v∥)o(dist(x,M)) (4.2.13)

for all x ∈ dom h near x̄ and v ∈ ∂ f (x).

Note that Corollary 3.1.5 shows that the aiming condition (D4) holds as long asM is

an active manifold for f at x̄ satisfying 0 ∈ ∂̂ f (x̄) and f is (b≤)-regular alongM at x̄. The

following proposition shows that Assumption D is sufficient to ensure Assumption A.

The proof of the Proposition appears in Appendix 7.1.3
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Proposition 4.2.5 (Proximal gradient method). If assumption D holds at x̄ ∈ dom f ,

then f and G satisfy Assumption A at x̄.

The following corollary, which is an immediate consequence of Proposition 4.2.5

and Theorem 3.7.5, shows that assumption D is automatically true for definable prob-

lems.

Corollary 4.2.6. Suppose that f = g + h0 + δX, where X ⊆ Rd, g is a C1 function

with Lipschitz gradient, the function h0 : Rd → R is Lipschitz on X, and we define

h := h0 + δX. Suppose that g, h0, and X are definable in an o-minimal structure. Then

there exists a finite N such that for a full measure set of v,w ∈ Rd, the tilted function

fv,w := g(x + w) + h0(x + w) + δ(x) − ⟨v, x⟩ has at most N composite Clarke critical

points x̄. Moreover, each composite limiting critical point x̄ is in fact composite Fréchet

critical and satisfies the following.

1. The function f and the proximal gradient mapping (4.2.12) satisfy Assumption A

at x̄ with respect to some active manifoldM.

2. The critical point x̄ is either a local minimizer or an active strict saddle point of

f .

Thus, we find that Assumption A is satisfied for common iterative mappings, under

reasonable assumptions, and is even automatic for certain generic classes of functions.

In the next several sections, we turn our attention to the algorithmic consequences of

theses assumptions.
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4.3 The two pillars

Assumption A at a point x̄ guarantees two useful behaviors, provided the iterates {xk} of

iteration (4.2.2) remain in a small ball around x̄. First xk must approach the manifold

M containing x̄ at a controlled rate, a consequence of the proximal aiming condition.

Second the shadow yk = PM(xk) of the iterates along the manifold form an approxi-

mate Riemannian stochastic gradient sequence with an implicit retraction. Moreover,

the approximation error of the sequence decays with dist(xk,M) and αk, quantities that

quickly tend to zero.

The formal statements of our results crucially require local arguments and frequently

refer to the following stopping time: given an index k ≥ 1 and a constant δ > 0, define

τk,δ := inf{ j ≥ k : x j < Bδ(x̄)}. (4.3.1)

Note that the stopping time implicitly depends on x̄, a point at which Assumption A

is satisfied. In the statements of our result, the point x̄ will always be clear from the

context. Second, we make the following standing assumption on αk and νk. We assume

they are in force throughout the rest of the sections.

Assumption E (Standing assumptions). Assume the following.

(E1) The map G is measurable.

(E2) There exist constants c1, c2 > 0 and γ ∈ (1/2, 1] such that

c1

kγ
≤ αk ≤

c2

kγ
.

(E3) {νk} is a martingale difference sequence w.r.t. to the increasing sequence of σ-

fields

Fk = σ(x j : j ≤ k and ν j : j < k),
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and there exists a function q : Rd → R+ that is bounded on bounded sets with

E[νk | Fk] = 0 and E[∥νk∥
4 | Fk] < q(xk).

We let Ek[·] = E[· | Fk] denote the conditional expectation.

(E4) The inclusion xk ∈ dom f holds for all k ≥ 1.

All items in Assumption E are standard in the literature on stochastic approximation

methods and mirror those found in [77, Assumption C]. The only exception is the fourth

moment bound on ∥νk∥, which stipulates that νk has slightly lighter tails. This bound

appears to be necessary for the setting we consider. We now turn to the first pillar.

4.3.1 Pillar I: Aiming towards the manifold

The following proposition ensures the sequence xk approaches the manifold. The proof

appears in Section 4.5.1.

Proposition 4.3.1. Suppose that f satisfies Assumption A at x̄. Let γ ∈ (1/2, 1] and

assume c1 ≥ 32/µ if γ = 1. Then for all k0 ≥ 1 and sufficiently small δ > 0, there exists

a constant C, such that the following hold with stopping time τk0,δ defined in (4.3.1):

1. There exists a random variable Vk0,δ such that

(a) The limit holds:

k2γ−1

log(k + 1)2 dist2(xk,M)1τk0 ,δ>k
a.s.
−−→ Vk0,δ.

(b) The sum is almost surely finite:

∞∑
k=1

kγ−1

log(k + 1)2 dist(xk,M)1τk0 ,δ>k < +∞.
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2. We have

(a) The expected squared distance satisfies:

E[dist2(xk,M)1τk0 ,δ>k] ≤ Cαk for all k ≥ 1.

(b) The tail sum is bounded:

E

 ∞∑
i=k

αidist(xi,M)1τk0 ,δ>i

 ≤ C
∞∑

i=k

α2
i for all k ≥ 1.

We note that Part 1b of the proposition holds not only almost surely, but also in

expectation, which is a stronger statement in general. Now we turn our attention to

Pillar II: the shadow iteration.

4.3.2 Pillar II: The shadow iteration

Next we study the evolution of the shadow yk = PM(xk) along the manifold, showing

that yk is locally an inexact Riemannian stochastic gradient sequence with error that

asymptotically decays as xk approaches the manifold. Consequently, we may control

the error using Proposition 4.3.1. The proof appears in Section 4.5.2

Proposition 4.3.2. Suppose that f satisfies Assumption A at x̄. Then for all k0 ≥ 1

and sufficiently small δ > 0, there exists a constant C, such that the following hold with

stopping time τk0,δ defined in (4.3.1): there exists a sequence of Fk+1-measurable random

vectors Ek ∈ R
d such that

1. The shadow sequence

yk =


PM(xk) if xk ∈ B2δ(x̄)

x̄ otherwise.
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satisfies yk ∈ B4δ(x̄) ∩M for all k and the recursion holds:

yk+1 = yk − αk∇M f (yk) − αkPTM(yk)(νk) + αkEk for all k ≥ 1. (4.3.2)

Moreover, for such k, we have Ek[PTM(yk)(νk)] = 0.

2. Let γ ∈ (1/2, 1] and assume that c1 ≥ 32/µ if γ = 1.

(a) We have the following bounds for k0 ≤ k ≤ τk0,δ − 1:

i. ∥Ek∥1τk0 ,δ>k ≤ C(1 + ∥νk∥)2(dist(xk,M) + αk)1τk0 ,δ>k

ii. max{Ek[∥Ek∥]1τk0 ,δ>k,Ek[∥Ek∥
2]1τk0 ,δ>k} ≤ C.

iii. E[∥Ek∥
2]1τk0 ,δ>k ≤ Cαk

(b) The following sums are finite

i.
∑∞

k=1
kγ−1

log(k+1)2 max{∥Ek∥1τk0 ,δ>k,Ek[∥Ek∥]1τk0 ,δ>k} < +∞

ii.
∑∞

k=1
kγ−1

log(k+1)2 max{∥Ek∥
21τk0 ,δ>k,Ek[∥Ek∥

2]1τk0 ,δ>k} < +∞

(c) The tail sum is bounded

E

1τk0 ,δ=∞

∞∑
i=k

αi∥Ek∥

 ≤ C
∞∑

i=k

α2
i for all k ≥ 1.

With the two pillars we separate our study of the sequence xk into two orthogonal

components: In the tangent/smooth directions, we study the sequence yk, which arises

from an inexact gradient method with rapidly decaying errors and is amenable to the

techniques of smooth optimization. In the normal/nonsmooth directions, we steadily

approach the manifold, allowing us to infer strong properties of xk from corresponding

properties for yk.
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4.4 Avoiding saddle points

In this section, we ask whether xk can converge to points x̄ at which ∇2
M

f (x̄) has at least

one strictly negative eigenvalue. We call such points strict saddle points, and whenM is

in addition an active manifold for f , then we call such points active strict saddle points.

We use a well-known technique in the stochastic approximation literature: isotropic

noise injection [61, 80–82].

Let us briefly describe this technique. Fix a point p ∈ Rd and consider a C2 mapping

Fp : Rd → Rd with an unstable zero at p, meaning ∇Fp(p) has an eigenvalue with a

strictly positive real part. Then a well-known result of Pemantle [61] states that, with

probability 1, the following perturbed iteration cannot converge to p:
Sample ξk ∼ Unif(B1(0))

Set Yk+1 = Yk + αkFp(Yk) + αkξk

 . (4.4.1)

As stated, the result of [61] does not shed light on the iteration (4.2.2). Nevertheless, in

light of (4.3.2), the shadow iteration yk does satisfy an iteration similar to (4.4.1) with

mapping

Fp(y) = −∇( f ◦ PM)(y),

which under reasonable assumptions is locally C2 near p and satisfies Fp(y) = −∇M f (y)

and ∇Fp(y) = −∇2
M

f (y) for all y ∈ M near p. Moreover, if p is an active strict saddle

of f , then ∇2
M

f (p) has a strictly negative eigenvalue, so p is an “unstable zero” of Fp.

Thus, we might reasonably expect yk to converge to p only with probability zero. If this

is the case, we can then lift the argument to xk, showing that if xk converges to p, then

so does yk—a probability zero event. This is the strategy we will apply in what follows,

taking into account the additional error term Ek in the shadow iteration (4.3.2), a key

technical issue that we have so far ignored.
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In order to formalize the above strategy, we prove the following extension of the

main result of [61] which takes into account the relationship between xk and yk described

above. The proof, which we defer to Section 4.6.1, draws on the techniques of [61, 80–

83].

Theorem 4.4.1 (Nonconvergence). Fix c1, c2 > 0 and let S ⊆ Rd. Suppose for any

p ∈ S , there exists a ball Bϵp(p) centered at p and a C2 mapping Fp : Bϵp(p) → Rd

that vanishes at p and has a symmetric Jacobian ∇Fp(p) that has at least one positive

eigenvalue. Suppose {Xk}
∞
k=1 is a stochastic process and for any k0, p ∈ S , and δ > 0

define the stopping time:

τk0,δ(p) = inf {k ≥ k0 : Xk < Bδ(p)} .

Suppose that for any p ∈ S , k0 ≥ 1, and all sufficiently small δp ≤ ϵp the following hold:

there exists c3, c4 > 0 possibly depending on p, but not on δp and ϵp, such that on the

event Ω0 = {τk0,δp(p) = ∞}, we have

1. (Local iteration.) There exists a process {Yk : k ≥ k0} ⊆ Bϵp/2(p) satisfying

Yk+1 = Yk + αkFp(Yk) + αkξk + αkEk (4.4.2)

for error sequence {Ek}, noise sequence {ξk}, and deterministic stepsize sequence

{αk} that are square summable, but not summable.

2. (Noise Conditions.) Let Fk be the sigma algebra generated by Xk0 , . . . , Xk and

Yk0 , . . . ,Yk. Define Wp to be the subspace of eigenvectors of ∇Fp(p) with positive

eigenvalues. Then we have

(a) E [ξk | Fk] = 0.

(b) lim supk E[∥ξk∥
4 | Fk] ≤ c3.

(c) E [| ⟨ξk,w⟩ | | Fk] ≥ c4 for k ≥ k0 and all unit norm w ∈ Wp.
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3. (Error Conditions.)

(a) We have lim supk E[1Ω0∥Ek∥
4 | Fk] < ∞.

(b) For all n ≥ k0, we have E [1Ω0

∑∞
k=n αk∥Ek∥] = Ok0

(∑∞
k=n α

2
k

)
.

Then P(limk→∞ Xk ∈ S ) = 0.

Looking at the theorem, recursion condition (4.4.2) is clearly modeled on the shadow

sequence of Proposition 4.3.2. Moreover, the error condition 3b on Ek precisely

matches 2c. Finally, the noise ξk is modeled on PTM(yk)(νk) in the shadow iteration,

which is mean zero and has bounded fourth moment. Condition 2c is not automatic

for all noise distributions and requires that νk has nontrivial mass in all directions of

negative curvature for f .

Given Theorem 4.4.1, we now ask: can xk converge to critical points x̄ at which

∇2
M

f (x̄) has a strict negative eigenvalue? In the following theorem we show that the an-

swer is no, provided that we choose the noise νk according to the following assumption:

Assumption F (Uniform noise). There exists r > 0 such that νk ∼ Unif(Br(0)) for all k.

The proof of the theorem appears in Section 4.6.2.

Theorem 4.4.2 (Nonconvergence to strict saddle point). Let S ⊆ Rd and suppose that

Assumption A holds at each point x̄ ∈ S , where each manifold is C4. Let M be the

manifold associated to a point x̄ ∈ S and suppose that ∇2
M

f (x̄) has a strictly negative

eigenvalue. Suppose that νk satisfies Assumption F. In addition, suppose that γ ∈ ( 1
2 , 1).

Then

P
(
lim
k→∞

xk ∈ S
)
= 0. (4.4.3)
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Note that the theorem applies to arbitrary sets S , making no assumptions on count-

ability/isolatedness. Second the result does not preclude the limit points of xk from lying

in S . Thus, the result is useful only when xk is known to converge.

We now examine two applications of the above theorem for the projected and proxi-

mal subgradient methods. The following corollary provides sufficient conditions for the

projected subgradient method to avoid active strict saddle points. We place the proof in

Appendix 7.1.4.

Corollary 4.4.3 (Projected subgradient methods). Suppose that f = g + δX, where

g : Rd → R is locally Lipschitz and X ⊆ Rd is closed. Let S consist of points x sat-

isfying 0 ∈ ∂̂ f (x) and that are C4 active strict saddle points of f . Suppose the following

hold for all x ∈ S with associated active manifoldMx:

1. The function g and the set X are strongly (a)-regular alongMx at x.

2. The function g is weakly convex around x or (b≤)-regular alongMx at x.

3. The set X is prox-regular at x or (b≤)-regular alongMx at x.

Suppose that νk satisfies Assumption F. Then the iterates of the stochastic projected

subgradient method (4.2.7) satisfy

P
(
lim
k→∞

xk ∈ S
)
= 0.

Next we analyze the the proximal gradient method. Recall that the paper [60]

showed that randomly initialized proximal gradient methods avoid active strict saddles

of weakly convex functions. The following Corollary shows that the same behavior

holds for perturbed proximal gradient methods beyond the weakly convex class. We

place the proof in Appendix 7.1.5.
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Corollary 4.4.4 (Proximal gradient methods). Suppose that f = g + h, where h : Rd →

R ∪ {∞} is closed and Lipschitz on its domain X := dom h and g : Rd → R is C1 with

Lipschitz continuous gradient on X. Let S consist of points x satisfying 0 ∈ ∂̂ f (x) and

that are C4 active strict saddle points of f . Suppose that for all x ∈ S with associated

active manifoldMx, the function f is strong (a)-regular and (b≤)-regular alongMx at

x. Suppose that νk satisfies Assumption F. Then the iterates of the stochastic proximal

gradient method (4.2.7) satisfy

P
(
lim
k→∞

xk ∈ S
)
= 0.

4.4.1 Consequences for generic semialgebraic functions

The results we have presented so far show that the perturbed projected subgradient and

the proximal gradient method cannot converge to Fréchet active strict saddle points,

provided that xk converges and various regularity properties hold. Although the con-

vergence of xk and the required regularity properties may seem stringent, they are in a

precise sense generic. Indeed, the genericity of the regularity properties was already

addressed in Section 3.7. Convergence also holds generically: it is known that all

limit points of the stochastic subgradient method, the stochastic projected subgradient

method, and the stochastic proximal method are (composite) Clarke critical points, as

long as f is a semialgebraic function [77, Corollary 6.4.]. Thus, since generic semialge-

braic functions have only finitely many (composite) Clarke critical points and one can

show (with small effort) that the set of limit points of each algorithm is connected, it

follows that the entire sequence xk must converge on generic problems (if the sequence

remains bounded). Thus we have the following three corollaries, whose proofs we place

in Appendix 7.1.6.

Corollary 4.4.5 (Subgradient method on generic semialgebraic functions). Let f : Rd →
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R be a locally Lipschitz semialgebraic function. Then for a full measure set of v the

following is true for the tilted function fv(x) := f (x) − ⟨v, x⟩: Let {xk}k∈N be generated

by the subgradient method 4.2.5 on fv. Suppose that νk satisfies Assumption F. Then on

the event {xk}k∈N is bounded, almost surely we have only two possibilities

1. xk converges to a local minimizer x̄ of fv.

2. xk converges to a Clarke critical point of fv

Thus, if f is Clarke regular, the sequence xk must converge to a local minimizer of fv.

Corollary 4.4.6 (Projected subgradient method on generic semialgebraic functions). Let

f = g+ δX, where X ⊆ Rd semialgebraic and closed and g : Rd → R is locally Lipschitz

and semialgebraic. Then for a full measure set of v,w ∈ Rd the following is true for

the tilted function fv,w(x) := g(x + w) + δX(x) − ⟨v, x⟩. Let {xk}k∈N be generated by the

projected subgradient method 4.2.8. Suppose that νk satisfies Assumption F. Then on

the event {xk}k∈N is bounded, almost surely we have only two possibilities

1. xk converges to a local minimizer x̄ of fv,w.

2. xk converges to a composite Clarke critical point of fv,w.

Thus, if g and X are Clarke regular, the sequence xk converges to a local minimizer of

fv,w.

Corollary 4.4.7 (Proximal gradient method on generic semialgebraic functions). Sup-

pose that f = g + h0 + δX, where X ⊆ Rd, g is a C1 function with Lipschitz gradi-

ent on X, the function h0 : Rd → R is Lipschitz on X, and we define h := h0 + δX.

Then for a full measure set of v,w ∈ Rd the following is true for the tilted function

76



fv,w := g(x+w)+ h0(x+w)+ δ(x)− ⟨v, x⟩. Let {xk}k∈N be generated by the proximal gra-

dient method 4.2.12. Suppose that νk satisfies Assumption F. Then on the event {xk}k∈N

is bounded, almost surely we have only two possibilities

1. xk converges to a local minimizer x̄ of fv,w.

2. xk converges to a composite Clarke critical point of fv,w.

Thus, if h0 and X are Clarke regular, the sequence xk converges to a local minimizer of

fv,w.

In short, the main conclusion of the above three theorems is

On generic regular semialgebraic functions, perturbed

subgradient/proximal methods converge only to local minimizers

We note in passing that the results hold verbatim if one replaces the word “semialge-

braic” with “definable in an o-minimal structure,” throughout.

4.5 Proofs of the two pillars

Throughout this section, we let Ek[·] = E[· | Fk] denote the conditional expectation. We

now present the proofs of the two pillars.

4.5.1 Proof of Proposition 4.3.1: aiming towards the manifold

Throughout the proof, we let C denote a constant depending on k0 and δ, which may

change from line to line. Choose δ ≤ min{1, c1µ

12γ }, satisfying Bδ(x̄) ⊆ U where U is
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the neighborhood in which Assumption A holds. Define Q := max{supx∈Bδ q(x), 1}. By

shrinking δ slightly, we can assume that the little o term in (A3) satisfies

o(dist(x,M)) ≤
µ

4(1 + Q)
dist(x,M) for all x ∈ Bδ(x̄).

Now define: Dk := dist(xk,M) for all k ≥ 0. We prove a recurrence relation satisfied

by the sequence Dk. To that end, define vk = Gαk(xk, νk) and observe that in the event

Ak := {τk0,δ > k}, we have

D2
k+1 ≤ ∥xk+1 − PM(xk)∥2

= ∥xk − αkvk − PM(xk)∥2

= ∥xk − PM(xk)∥2 − 2αk ⟨vk, xk − PM(xk)⟩ + α2
k ∥vk∥

2

≤ D2
k − 2αkµDk + 2αk(1 + ∥νk∥)2o(Dk)

− 2αk ⟨νk, xk − PM(xk)⟩ +C(1 + ∥νk∥)2︸         ︷︷         ︸
:=Bk

α2
k , (4.5.1)

where the second inequality follows from the proximal aiming and local boundedness

properties of G; see Assumption A. This inequality will allow us to prove all parts of the

result.

Indeed, let us prove Part 1. To that end, first note that the bound Ek[∥νk∥
2]1Ak ≤

q(xk)1Ak ≤ Q implies that there exists C > 0 such that

Ek[Bk]1Ak ≤ C,

meaning the conditional expectation is bounded for all k. Moreover, by our choice of δ,

Ek[(1 + ∥ν∥)2o(Dk)1Ak] ≤
µ

2
Dk1Ak .

Thus, for each k, we have

Ek[D2
k+11Ak+1] ≤ Ek[D2

k+11Ak]
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≤ D2
k1Ak − αkµDk1Ak + Ek[Bk]1Akα

2
k − 2αk ⟨Ek[νk], xk − PM(xk)⟩ 1Ak

≤ D2
k1Ak − αkµDk1Ak +Cα2

k

≤ (1 − (αk/2)µ)D2
k1Ak − (αk/2)µDk1Ak +Cα2

k , (4.5.2)

where the first inequality follows from 1Ak+1 ≤ 1Ak ; the second inequality follows from

Fk-measurability of Ak; and the fourth inequality follows since Dk1Ak ≥ D2
k1Ak (recall

δ ≤ 1). Now apply Lemma 7.1.6 with the sequences Xk := D2
k1Ak ,Yk := αkµDk1Ak , and

Zk := Cα2
k and deduce that (k2γ−1/ log(k + 1)2)D2

k almost surely converges to a finite

valued random variable and the following sum is finite:

∞∑
k=1

k2γ−1αk

log(k + 1)2µDk1Ak < +∞.

Recalling that αk ≥ c1/kγ, we get the claimed summability result.

Next we prove Part 2. To that end, take expectation of (4.5.2) and use the law of

total expectation to deduce that for some C > 0, we have

E[D2
k+11Ak] ≤ (1 − µαk/2)E[D2

k1Ak] − (αk/2)µE[Dk1Ak] +Cα2
k

≤ (1 − µc1k−γ/2)E[D2
k1Ak] − (αk/2)µE[Dk1Ak] +Ck−2γ

To prove part 2a, simply apply Lemma 7.1.8 applied with sequence sk = E[D2
k1Ak] and

constants c = µc1/2 and C. To prove part 2b, sum the above inequality from n to infinity

to get

∞∑
k=n

(αk/2)µE[Dk1Ak] ≤ E[D2
n1An] +C

∞∑
k=n

α2
k ≤ Cn−γ +C

∞∑
k=n

α2
k ,

where the second inequality follows from Part 2a. Noting that n−γ = O(
∑∞

k=n α
2
k) proves

the result.
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4.5.2 Proof of Proposition 4.3.2: the shadow iteration

Throughout the proof we let C denote a constant depending on k0 and δ, but not on k,

which may change from line to line. We assume δ is small enough that the conclusions

of Proposition 4.3.1 hold; that B4δ(x̄) ⊆ U where U is the neighborhood in which

Assumption A holds; and that PM and ∇PM are Lipschitz continuous on B4δ(x̄). Write

τ = τk0,δ and fix index k ≥ 1. Finally, recall that PM is C2 on U and ∇PM(x) = PTM(x)

for all x ∈ M.

Let us first prove that yk ∈ B4δ(x̄). Clearly, we need only consider the case x ∈ B2δ(x̄).

In this case,

∥yk − x̄∥ ≤ ∥yk − xk∥ + ∥xk − x̄∥ ≤ 2∥xk − x̄∥ ≤ 4δ,

where the final inequality follows since x̄ ∈ M. Therefore, we always have ∥yk − x̄∥ ≤

4δ.

Next, let us define the error sequence Ek in the shadow iteration. To that end, denote

Tk := TM(yk) and

wk := yk − αk∇M f (yk) − αkPTk(νk)

Then with error sequence Ek := (yk+1 − wk)/αk, the claimed recursion is trivially true.

Thus, in the remainder of the proof, we bound Ek.

Turning to the bound, we first note that throughout the proof, we must separate

the analysis into two cases: xk+1 ∈ B2δ(x̄) and xk+1 < B2δ(x̄). In the second case, the

following preliminary observation will be useful:

Claim: Suppose that in the event {τ > k} it holds that xk+1 < B2δ(x̄). Then there exists

C > 0 such that

∥yk+1 − yk∥ ≤ 4δ ≤ C∥xk+1 − xk∥. (4.5.3)
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Proof. First notice that

∥xk+1 − xk∥ ≥ ∥xk+1 − x̄∥ − ∥xk − x̄∥ ≥ 2δ − δ ≥ δ.

Therefore, the result trivially holds since ∥yk+1 − yk∥ ≤ 4δ. □

With the preliminaries set, we now bound ∥Ek∥. To that end, in what follows we

assume we are in the event {τ > k} where k ≥ k0. In this event, our strategy will be to

bound the terms R1 and R2 in the following decomposition:

∥Ek∥ = ∥(yk+1 − wk)/αk∥

≤ ∥yk+1 − yk − PTk(yk+1 − yk)∥/αk︸                                  ︷︷                                  ︸
:=R1

+ ∥PTk(yk+1 − yk)/αk + ∇ fM(yk) + PTk(νk)∥︸                                               ︷︷                                               ︸
:=R2

.

(4.5.4)

In our bounds of these terms, we frequently use the following bound: there exists C > 0

such that

∥xk+1 − xk∥ ≤ αk∥Gαk(xk, νk)∥ ≤ C(1 + ∥νk∥)αk. (4.5.5)

We now bound R1 and R2 separately.

The following claim bounds R1.

Claim: There exists C > 0 such that

R11τ>k ≤ C(1 + ∥νk∥)2αk1τ>k. (4.5.6)

Proof. We consider two cases. First suppose xk+1 ∈ B2δ(x̄). Let C > 0 be a local

Lipschitz constant of ∇PM and PM. Then it follows that vector yk+1 − yk = PM(xk+1) −

PM(xk) is nearly tangent to the manifold at yk:

∥yk+1 − yk − PTk(yk+1 − yk)∥ ≤ C∥yk+1 − yk∥
2 ≤ C3∥xk+1 − xk∥

2.
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Thus, taking into account (4.5.5), we have for some C > 0, the bound:

R1 ≤ C(1 + ∥νk∥)2αk,

as desired. Now suppose that xk+1 < B2δ(x̄). Therefore, there exists C > 0 such that

∥yk+1 − yk − PTk(yk+1 − yk)∥ ≤ 2∥yk+1 − yk∥ ≤ C∥xk+1 − xk∥ ≤
C2

δ
∥xk+1 − xk∥

2,

where the first inequality follows since ∥PTk∥ ≤ 1 and the second and third inequalities

follow from Claim 4.5.2. Thus taking into account (4.5.5), we again have for some

C > 0, the bound:

R1 ≤ C(1 + ∥νk∥)2αk,

Thus, putting together both bounds on R1, the result follows. □

The following claim bounds R2.

Claim: There exists C > 0 such that

R21τ>k ≤ C(1 + ∥νk∥)2(dist(xk,M) + αk)1τ>k. (4.5.7)

Proof. To bound R2, we first simplify:

R2 = ∥PTk(yk+1 − yk)/αk + ∇M f (yk) + PTk(νk)∥

≤ ∥PTk(yk+1 − xk+1)/αk∥ + ∥PTk(xk − yk)/αk∥ + ∥PTk(xk+1 − xk)/αk + ∇M f (yk) + PTk(νk)∥

≤ ∥PTk(yk+1 − xk+1)/αk∥ +C(1 + ∥νk∥)2(dist(xk,M) + α), (4.5.8)

where the second inequality follows from by Assumption A and the inclusion xk − yk ∈

NM(yk), which implies that PTk(xk − yk) = 0. We now bound the term ∥PTk(yk+1 −

xk+1)/αk∥.

First suppose that xk+1 ∈ B2δ(x̄) and note that yk+1 ∈ B4δ(x̄) ∩ M ⊆ U ∩ M. Let

C′ > 0 be a local Lipschitz constant of ∇PM and PM. Then for some C > 0 larger than
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C′, we have

∥PTk(yk+1 − xk+1)/αk∥ ≤ ∥(PTk+1 − PTk)(yk+1 − xk+1)/αk∥

≤ C′∥yk+1 − yk∥dist(xk+1,M)/αk

≤ (C′)2∥xk+1 − xk∥(dist(xk,M) + ∥xk+1 − xk∥)/αk

≤ C3(1 + ∥νk∥)dist(xk,M) +C4(1 + ∥νk∥)2αk,

where the first inequality follows from xk+1−yk+1 ∈ NM(yk+1), which implies PTk+1(yk+1−

xk+1) = 0; the second inequality follows from Lipschitz continuity of ∇PM(y) = PTM(y)

in y; the third inequality follows from Lipschitz continuity of PM and Lipschitz conti-

nuity of dist(·,M); and the fourth inequality follows from (4.5.5). Plugging this bound

into (4.5.8), yields that for some C > 0, we have

R2 ≤ C(1 + ∥νk∥)2(dist(xk,M) + αk),

as desired.

Now suppose that xk+1 < B2δ(x̄). Then, there exists C > 0 such that

∥PTk(yk+1 − xk+1)/αk∥ ≤ ∥PTk(yk+1 − xk)∥/αk + ∥PTk(xk − xk+1)∥/αk

≤ 2δ/αk + ∥xk − xk+1∥/αk

≤ (1 +C)∥xk − xk+1∥/αk

≤
(1 +C)C
δαk

∥xk − xk+1∥
2

≤
(1 +C)C3

δ
(1 + ∥νk∥)2αk

where first inequality follows from the triangle inequality; the second inequality follows

since xk ∈ B2δ(x̄) and yk+1 = x̄; the third and fourth third inequalities follow from

Claim 4.5.2; and the fifth follows from (4.5.5). Thus, in this case, we find that there

exists C > 0 with

R2 ≤ C(1 + ∥νk∥)2(dist(xk,M) + αk).
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Therefore, putting together both bounds on R2, the result follows. □

Now we prove Part 2a. Beginning with subpart 2(a)i, we find that by Claim 4.5.2

and 4.5.2, we have that for some C > 0, the bound

∥Ek∥1τ>k ≤ R11τ>k + R21τ>k ≤ C(1 + ∥νk∥)2(dist(xk,M) + αk)1τ>k, (4.5.9)

as desired. Turning to Part 2(a)ii, first note that that dist(xk,M)1τ>k ≤ δ. Thus, the bound

will follow if the conditional expectation of (1+ ∥νk∥)4 is bounded whenever xk ∈ Bδ(x̄).

This holds by assumption, since

Ek[∥νk∥
4]1τ>k ≤ sup

x∈Bδ(x̄)
q(x) < ∞.

Finally, we prove Part 2(a)iii. Again using the boundedness of the conditional fourth

moment of ∥νk∥1τ>k, we find that there exists a C > 0 such that

Ek[∥Ek∥
21τ>k] ≤ Cdist2(xk,M)1τ>k +Cα2

k1τ>k, (4.5.10)

where the first inequality follows from Jensen’s inequality and the second inequality

follows from (4.5.9). Consequently, there exists C′ > 0 such that

E[∥Ek∥
21τ>k] = E[Ek∥Ek∥

21τ>k] ≤ CE[dist2(xk,M)1τ>k] +Cα2
k ≤ C′αk,

where the third inequality follows from Part 2a of Proposition 4.3.1. This prove Part 2a.

Now we prove Part 2b, beginning with Part 2(b)i. To that end, define Fk =

kγ−1

log(k+1)2 ∥Ek∥1τ>k. Recall that by the conditional Borel-Cantelli theorem (Lemma 7.1.2),

the sequence Fk is summable whenever Ek[Fk] is summable. Thus, we first upper bound

Ek[Fk] by a summable sequence: there exists C > 0 such that

Ek[Fk] ≤ C
kγ−1

log(k + 1)2 (dist(xk,M) + αk)1τ>k

≤ C
kγ−1

log(k + 1)2 dist(xk,M)1τ>k +C
c2

k log(k + 1)2 ,
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where the first inequality follows from (4.5.10) and the second inequality follows by

definition of αk. By Part 1 of Proposition 4.3.1, it follows that we have upper bounded

Ek[Fk] by a summable sequence. Therefore, it follows that Fk is summable, as desired.

This proves part 2(b)i.

Now we prove part 2(b)ii. The conditional expectation is summable by Part 2(a)iii,

since
∞∑

k=k0

kγ−1

log(k + 1)2E[∥Ek∥
21τ>k] ≤ C

∞∑
k=k0

k−1

log(k + 1)2 < +∞.

By conditional Borel-Cantelli theorem (Lemma 7.1.2), we also have that
∞∑

k=k0

kγ−1

log(k + 1)2 ∥Ek∥
21τ>k < +∞,

as desired.

Now we prove Part 2c. To that end, note that there exists C > 0 such that

E[αk∥Ek∥1τ>k] = E[αkEk[∥Ek∥1τ>k]] ≤ CE[αkdist(xk,M)1τ>k + α
2
k1τ>k].

where the inequality follows from (4.5.10). Thus, the result follows by Part 2b of Propo-

sition 4.3.1.

4.6 Proofs of the main theorems

In this section, we prove the remaining theorems.

4.6.1 Proof of Theorem 4.4.1: nonconvergence of stochastic process

We begin by recalling and slightly reframing Proposition 3 in [61]. This result provides

a Lyapunov function, which we will use to show that each local process Yk escapes a
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local neighborhood of each p ∈ S .

Proposition 4.6.1 (Lyapunov Function). Fix p ∈ Rd and suppose F : Rd → Rd is a C2

mapping that is zero at p and has a symmetric Jacobian ∇F(p). Suppose that ∇F(p) has

at least one positive eigenvalue and let W denote the subspace of eigenvectors of ∇F(p)

with positive eigenvalues. Then, there exists a matrix A ∈ Rd×d with range(AT ) = W, a

ball B centered at p, and a C2 mapping Φ : B → Rd with Φ(p) = p and ∇Φ(p) = Id

such that the function η : B → R defined as

η(v) = ∥A(Φ(v) − p)∥2

satisfies the following condition: There exists c, c′ > 0 such that

η(v + ϵF(v)) ≥ (1 + cϵ)η(v) − c′ϵ2 for v in B and all sufficiently small ϵ.

In particular, we have

η′(v; F(v)) ≥ cη(v) for all v ∈ B.

Turning to the proof of Theorem 4.4.1, we begin with a covering argument: For

any p ∈ S , choose ϵp small enough that both the conditions of Theorem 4.4.1 and

Proposition 4.6.1 hold in Bϵp(p) for Fp. Let δp ≤ ϵp and c3, c4, c5 > 0 be the associated

constants. Clearly, the union ∪p∈S Bδp(p) is an open cover of set S , and therefore there

exists a countable index set Λ ⊂ S such that S ⊂ ∪p∈ΛBδp(p). Therefore, to prove

Theorem 4.4.1, it suffices to show that

P
(
Xk ∈ Bδp(p),∀k ≥ k0

)
= 0 for all k0 ≥ Kp. (4.6.1)

To this end, fix p ∈ Λ and k0 ≥ Kp. Let F = Fp denote the local mapping in

Condition 1 of Theorem 4.4.1. In addition, let η = ηp, denote the mapping associated
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to F, guaranteed to exist by Theorem 4.6.1.3 Furthermore, recall the stopping time

τk0 = τk0,δp(p), defined as τk0,δp(p) = inf{k ≥ k0 : Xk < Bδp(p)}. Note that (4.6.1) holds if

P(τk0 = ∞) = 0.

Our strategy is as follows. We first prove that on the event {τk0 = ∞}, we have

η(Yk) → 0 almost surely. Then we show that P({τk0 = ∞} ∩ {η(Yk) → 0}) = 0. This

will imply that P({τk0 = ∞}) = 0 and the proof will be complete. These two claims are

subjects of the following two subsections.

4.6.1.1 Claim: On the event {τk0 = ∞}, we have η(Yk)→ 0

To prove this claim, note that the following hold for almost all sample paths in the event

{τk0 = ∞}:

1. The sequence Yk is bounded.

2. Define βk =
∑k−1

i=0 αi. Then for each T > 0, the limit holds:

lim
n→∞

 sup
k : 0≤βk−βn≤T

∥∥∥∥∥∥∥
k−1∑
i=n

αi · (ξi + Ek)

∥∥∥∥∥∥∥
 = 0. (4.6.2)

Indeed, note that by Condition 3b of the Theorem, it suffices to show Mk =∑k
i=0 αiξi converges almost surely, since then it is a Cauchy sequence. To prove

that Mk converges, note that
∑

i α
2
i < ∞ and lim supE[∥ξk∥

2
| Fk] < ∞, so Mk is a

martingale. Moreover,

sup
k≥0
E [∥Mk∥]2

≤ sup
k≥0
E

[
∥Mk∥

2]
≤ c

1
2
3

∑
i≥0

α2
i < ∞. (4.6.3)

Standard martingale theory then shows that Mk converges almost surely (Theorem

4.2.11 in [85]). Therefore, (4.6.2) holds almost surely.
3Note that strictly speaking we should extend F to all Rd, for example, by a partition of unity [84,

Lemma 2.26]. Since the argument that follows is local, we omit this discussion for simplicity.
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These conditions match those of [81, Theorem 1.2]. Consequently, by this result

it holds that the set of limit points of Yk is almost surely invariant under the mapping

Θt : Bϵp/2(p) → Rd, defined as the time-t map of the ODE γ̇(t) = F(γ(t)). Thus, for

any x′ in limit set of Yk, we have Θt(x′) ∈ Bϵp/2(p) for all t ≥ 0. Consequently, by

Proposition 4.6.1, we have

η′(Θt(x′); F(Θt(x′))) ≥ cη(Θt(x′)) for all t ≥ 0. (4.6.4)

Therefore, by integrating η′ with respect to t, we have for all t ≥ 0, the bound

η(Θt(x′)) = η(Θ0(x′)) +
∫ t

0
η′(Θs(x′); F(Θs(x′)))ds ≥ η(Θ0(x′)) +

∫ t

0
cη(Θs(x′))ds.

Thus, by Gronwall’s inequality [86] it holds that

η(Θt(x′)) ≥ ectη(Θ0(x′)) = ectη(x′) for all t ≥ 0.

Now observe that since Θt(x′) ∈ Bϵp/2(p), the quantity η(Θt(x′)) is bounded for all t ≥ 0.

Consequently, we must have η(x′) = 0. Thus, we have shown that for all limits points

x′ of Yk, we have η(x′) = 0. Since η is continuous in Bϵp/2(p), we must therefore have

η(Yk)→ 0.

4.6.1.2 Claim: We have P({τk0 = ∞} ∩ {η(Yk)→ 0}) = 0.

We begin by stating the following straightforward extension of [83, Theorem 4.1].

Lemma 4.6.1. Let {ζk}k be a nonnegative sequence of random variables adapted to a

filtration {Fk} satisfying the following recurrence almost surely on an F∞-measurable

set Ω0:

ζk+1 ≥ ζk + αk(ek+1 + rk+1 + r̂k+1) for all k ≥ k0.
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where {αk} is a square-summable, but not summable sequence. Assume that {ek}k, {rk},

and {r̂k}k are Fk measurable and satisfy

E[ek+1 | Fk] = 0;
∞∑

k=1

r2
k < +∞

lim sup
k
E[e2

k+1 | Fk] < ∞ lim inf
k
E[|ek+1| | Fk] > 0,

almost surely on Ω0. Assume that for n ≥ k0, we have

E

1Ω0

∞∑
k=n

αk|r̂k+1|

 = O

 ∞∑
k=n

α2
k

 .
Then we have P(Ω0 ∩ {ζk → 0}) = 0.

Proof. Without loss of generality we may assume k0 = 0. Following [83, Theorem 4.1]

(itself based on [80, Page 401]) it suffices to work in the case where there exist fixed

constants µ and C > 0 such that almost surely on the whole probability space, we have

E[ek+1 | Fk] = 0 and lim sup
k
E[e2

k+1 | Fk] < C

lim inf
k
E[|ek+1| | Fk] > µ > 0 and

∞∑
k=1

r2
k < C.

Now define the nonnegative residual sequence:

αkUk+1 = ζk+1 − ζk − αk(ek+1 + rk+1 + r̂k+1)

Notice that for all k ≥ 0, we have

ζk =

ζ0 +

k∑
j=0

α j(e j+1 + r j+1 + r̂ j+1 + U j+1)

 on G := Ω0 ∩ {ζk → 0}.

Therefore, on G, we have

−ζ0 =

 ∞∑
j=0

α j(e j+1 + r j+1 + r̂ j+1 + U j+1)

 .
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Then as argued the proof of [83, Theorem 4.1] it suffices by Theorem A of [80] (included

as Lemma 7.1.3 in the Appendix) to show that

E

1G

∞∑
k=n

αk|Uk+1 + r̂ j+1|

 = o

 ∞∑
k=n

α2
k

1/2 ,
Clearly, it suffices to bound the series E

[
1G

∑∞
j=K α jU j+1

]
(which consists of nonnegative

terms), since by assumption, we have

E

1G

∞∑
k=n

αk|r̂ j+1|

 = O

 ∞∑
j=n

α2
j

 = o


 ∞∑

j=n

α2
j


1/2 .

To that end, note that for all k, n ≥ 0, we have

ζn+k =

ζn +

n+k∑
j=n

α j(e j+1 + r j+1 + r̂ j+1 + U j+1)


Hence on G, we may let k tend to infinity, yielding:

−ζn =

∞∑
j=n

α j(e j+1 + r j+1 + r̂ j+1 + U j+1).

Thus, on the event G, we have

∞∑
j=n

α jU j+1 = −ζn −

∞∑
j=n

α j(e j+1 + r j+1 + r̂ j+1)

Therefore, we find that

E

1G

∞∑
j=n

α jU j+1

 ≤ −E [ζn] − E

1G

∞∑
j=n

α j(e j+1 + r j+1 + r̂ j+1)


≤

∣∣∣∣∣∣∣E
1G

∞∑
j=n

α j(e j+1 + r j+1)


∣∣∣∣∣∣∣ + o


 ∞∑

j=n

α2
j


1/2 .

where the second inequality follows from nonnegativity of ζn and our assumptions on

r̂ j+1. Thus, to complete the bound of E[1G
∑∞

j=K α jU j+1] we must show that∣∣∣∣∣∣∣E
1G

∞∑
j=n

α j(e j+1 + r j+1)


∣∣∣∣∣∣∣ = o


 ∞∑

j=n

α2
j


1/2 .
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The above bound follows by the exact same argument as [83, Theorem 4.1], which

we reproduce for completeness: First let Gn = E[1G | Fn], recall that G is F∞ measurable

and that Gn converges to 1G almost surely in Lp for every p ≥ 1, e.g., E[(Gn−1G)2]→ 0.

Turning to the bound, we have∣∣∣∣∣∣∣E
1G

∞∑
j=n

α j(e j+1 + r j+1)


∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣E
(1G −Gn)

∞∑
j=n

α j(e j+1 + r j+1)


∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣E
Gn

∞∑
j=n

α j(e j+1 + r j+1)


∣∣∣∣∣∣∣

≤ E[(1G −Gn)2]1/2

E

 ∞∑

j=n

α j(e j+1 + r j+1)


2


1/2

︸                                ︷︷                                ︸
=:R1

+E

 ∞∑
j=n

α j|r j+1|

︸            ︷︷            ︸
=:R2

.

The proof will be complete if R1 = O
(∑∞

j=n α
2
j

)1/2
and R2 = o

(∑∞
j=n α

2
j

)1/2
. Let us first

bound R2:

R2 ≤

 ∞∑
j=n

α2
j


1/2

E

 ∞∑
j=n

r2
j+1


1/2

= o


 ∞∑

j=n

α2
j


1/2 ,

where the last inequality follows from the bound
∑∞

k=1 r2
k+1 < C. Now we bound R1:

R1 ≤

E

 ∞∑

j=n

α je j+1


2


1/2

+

E

 ∞∑

j=n

α jr j+1


2


1/2

≤

E
 ∞∑

j=n

α2
jE[e2

j+1 | Fk]




1/2

+

 ∞∑
j=n

α2
j


1/2 E

 ∞∑
j=n

r2
j+1




1/2

= O


 ∞∑

j=n

α2
j


1/2 .

Therefore, the proof is complete. □

Now we apply the above Lemma. To that end, we state a few simplifications and

facts to be used below. First, throughout the proof, we let C be a positive constant that

changes from line to line. Second, we simplify notation and let τ denote τk0,δ. Third, we

recall the bound c1
kγ ≤ αk ≤

c2
kγ . Fourth, the function η is weakly convex and Lipschitz

continuous on Bϵp(p). Fifth, the Jacobian ∇Φ is Lip∇Φ-Lipschitz in Bϵp(p). Sixth, we
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note that for sufficiently large k, we have the following on {τ = ∞}: Yk + αkF(Yk) ∈

Bϵp(p). We may assume without loss of generality that these assertions hold for all

k ≥ 1. Finally, we note that by shrinking ϵp, if necessary, we can assume that on the

event {τ = ∞}, we have

smin(A) lim inf
k

inf
w∈W∩Sd−1

E[| ⟨w, ξk⟩ | | Fk] − ϵp lim sup
k
E[∥ξk∥ | Fk]∥A∥opLip∇Φ

≥ c4smin(A) − ϵpc1/4
3 ∥A∥opLip∇Φ > 0 (4.6.5)

where c4 and c3 are independent of ϵp and δp, A is defined in Proposition 4.6.1, and

smin(A) denotes the minimal nonzero singular value of A.

Now let s : Bϵp(p)→ Rd be a selection of ∂η defined as follows: for all y ∈ Bϵp(p),

• If η(y) , 0, then η is differentiable at Y , so set s(y) = ∇η(y).

• If η(y) = 0, then η is nondifferentiable, so we choose subgradient

s(Y) = ∇Φ(y)⊤A⊤u ∈ ∂η(y)

where u ∈ Sd−1 satisfies ∥A⊤u∥ = ∥A∥op > 0.

Next, consider the event Ω0 = {τ = ∞}. Then by the boundedness of s(Yk + αkF(Yk))

and the weak convexity of η on Bϵp(p), there exists C > 0 such that

η(Yk+1) ≥ η(Yk + αkF(Yk)) + ⟨s(Yk + αkF(Yk)), αkEk + αkξk⟩ −C∥αkEk + αkξk∥
2

≥ η(Yk + αkF(Yk)) + ⟨s(Yk + αkF(Yk)), αkξk⟩ −C∥αkEk + αkξk∥
2 −Cαk∥Ek∥

≥ (1 + cαk)η(Yk) + ⟨s(Yk + αkF(Yk)), αkξk⟩ −C∥αkEk + αkξk∥
2 −Cαk∥Ek∥ −Cα2

k .

(4.6.6)

Now define four sequences:

ζk := η(Yk); ek+1 := ⟨s(Yk + αkF(Yk)), ξk⟩ ; rk+1 := −Cαk
(
1 + ∥Ek + ξk∥

2) ; r̂k+1 := −C∥Ek∥
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and observe that on Ω0, we have

ζk+1 ≥ ζk + αk(ek+1 + rk+1 + r̂k+1).

Now we must verify the assumptions of the Lemma. We begin with r̂k+1. To that

end, observe that

E

1Ω0

∞∑
k=n

αkr̂k+1

 = O

 ∞∑
k=n

α2
k

 ,
by our assumption on ∥Ek∥. Next we prove square summability of rk+1 on Ω0: Indeed,

observe

r2
k+1 ≤ Cα2

k(∥ξk∥
4 + ∥Ek∥

4 + 1).

Moreover both lim supk Ek[∥ξk∥
4 | Fk] < ∞ and lim supk Ek[∥Ek∥

4 | Fk] < ∞ are bounded

on Ω0. Therefore, by conditional Borel-Cantelli Lemma 7.1.2, we have

∞∑
k=1

r2
k+1 < +∞.

almost surely on Ω0.

Finally we prove that ek has the desired properties. First note that we have

E[ek+1 | Fk] = 0 and lim sup
k
E[e2

k+1 | Fk] < ∞.

on Ω0. Indeed, this follows since lim supk E[∥ξk∥
4 | Fk] < ∞ almost surely and and

Yk + αkF(Yk) ∈ Bϵp(p) on Ω0. Next, since η is globally Lipschitz on Bϵp(p), we have that

s(Yk + αkF(Yk)) is uniformly bounded. Thus,

lim sup
k
E[e2

k+1 | Fk] ≤ lim sup
k
E[∥s(Yk + αkF(Yk))∥2∥ξk∥

2 | Fk] < ∞,

on Ω0, as desired.

Now we prove that lim inf E[|ek+1| | Fk] is positive on Ω0. To that end, recall that the

mapping Φ satisfies ∇Φ(p) = Id. Turning to the proof, there are two cases to consider.
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First suppose that η(Yk + αkF(Yk)) , 0. Then η is differentiable at Yk + αkF(Yk). Now

define uk := A(Φ(Yk+αkF(Yk))−p)
∥A(Φ(Yk+αkF(Yk))−p)∥ and note that

s(Yk + αkF(Yk)) = ∇η(Yk + αkF(Yk)) = ∇Φ(Yk + αkF(Yk))⊤A⊤uk

= A⊤uk + (∇Φ(Yk + αkF(Yk)) − ∇Φ(p))⊤A⊤uk

∈ A⊤uk + ϵp∥A∥opLip∇ΦB1(0),

where the inclusion follows since Yk+αkF(Yk) ∈ Bϵp(p). Let smin(A) denote the minimal

nonzero singular value of A and notice that since uk ∈ S
d−1 ∩ range(A), we have that

wk := AT uk satisfies and

wk ∈ W and ∥wk∥ ≥ smin(A) > 0.

Therefore, it follows that on the event Ω0, we have

E[|ek+1| | Fk] = E[| ⟨s(Yk + αkF(Yk)), ξk⟩ | | Fk]

≥ E[| ⟨wk, ξk⟩ | | Fk] − ϵpE[∥ξk∥ | Fk]∥A∥opLip∇Φ

≥ smin(A) inf
w∈W∩Sd−1

E[| ⟨w, ξk⟩ | | Fk] − ϵpE[∥ξk∥ | Fk]∥A∥opLip∇Φ

We now consider the case η(Yk + αkF(Yk)) = 0. In this case, there exists uk ∈ S
d−1 such

that ∥A⊤uk∥ = ∥A∥op and

s(Yk + αkF(Yk)) = ∇Φ(Yk + αkF(Yk))⊤A⊤uk ∈ A⊤uk + ϵp∥A∥opLip∇ΦB1(0),

Recall range(A⊤) = W. Thus, we have that the vector wk := A⊤uk is in W and ∥wk∥ =

∥A∥op > 0. Thus, for all v ∈ Rd, we have

| ⟨s(Yk + αkF(Yk)), v⟩ | = ⟨∇Φ(Yk + αkF(Yk))⊤A⊤uk, v⟩ ≥ ⟨wk, v⟩ − ϵpLip∇Φ ∥A∥op ∥v∥ .

Taking v = ξk, we obtain

E[| ⟨s(Yk + αkF(Yk)), ξk⟩ | | Fk] ≥ ∥A∥op inf
w∈W∩Sd−1

E[| ⟨w, ξk⟩ | | Fk] − ϵpE[∥ξk∥ | Fk]∥A∥opLip∇Φ
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Thus, putting both cases together, we find that on the event Ω0, we have

lim inf
k
E[|ek+1| | Fk] ≥ smin(A) lim inf

k
inf

w∈W∩Sd−1
E[| ⟨w, ξk⟩ | | Fk]−ϵp lim sup

k
E[∥ξk∥ | Fk]∥A∥opLip∇Φ > 0,

where the last inequality follows from (4.6.5).

4.6.2 Proof of Theorem 4.4.2: nonconvergence to saddle points

In this section, prove Theorem 4.4.2 by verifying that the iterates {xk}k∈N satisfy the

conditions of Theorem 4.4.1. We begin with some notation. To this end, observe that

there exists ϵ > 0 such that the function fM : B2ϵ(x̄)→ R, defined as the composition

fM := f ◦ PM (4.6.7)

is C2 and satisfies

∇ fM(x) = ∇M f (x) and ∇2 fM(x) = ∇2
M

f (x)

for all x ∈ B2ϵ(x̄) ∩ M. Moreover, we may also assume that the projection map

PM : B2ϵ(x̄) → Rd is C2, in particular, Lipschitz with Lipschitz Jacobian. Throughout

the proof, we assume that δ ≤ ϵ/4 is small enough that conclusions of Propositions 4.3.1

and 4.3.2 are valid; we shrink δ several further times throughout the proof. In addition,

we let C denote a constant depending on k0 and δ, which may change from line to line.

Now, denote stopping time (4.3.1) by τ := τk0,δ and the noise bound by Q :=

supx∈Bδ(x̄) q(x). Observe that by Proposition 4.3.2, the shadow sequence yk satisfies

yk ∈ B4δ(xk) ∩M ⊆ Bϵ(x̄) ∩M and recursion holds:

yk+1 = yk − αk∇ fM(yk) − αkPTM(yk)(νk) + αkEk.

In addition, defining

f ∗ := inf
x∈Bϵ (x̄)

fM(x),
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we have the bound f ∗1τ>k ≤ f (yk)1τ>k for all k. We now turn to the proofs.

To that end, fix a point p ∈ S with associated manifoldM and neighborhoodU. Let

ϵp be small enough that Bϵp(x̄) ⊆ U and define the C2 mapping Fp : Bϵp(p)→ Rd by:

Fp(y) = −∇ fM(y),

where fM := f ◦ PM. Note that the mapping F is indeed C2, sinceM is a C4 manifold,

and hence, fM is C3. Moreover, since ∇F(p) = −∇2
M

f (p), the mapping Fp has at least

one eigenvector with positive eigenvalue. In addition, the subspace Wp spanned by such

eigenvectors is contained in TM(p).

Turning to the proof, define Xk = xk for all k ≥ 1. We now construct the sequences

Yk, ξk, and Ek and show they satisfy the assumptions of the theorem. Beginning with

Yk, recall that by Proposition 4.3.2, for all k ≥ 1 and all sufficiently small δ > 0, the

sequence

Yk :=


PM(Xk) if xk ∈ B2δ(x̄)

p otherwise.
, (4.6.8)

satisfies Yk ∈ B4δ(x̄) ∩M and the recursion

Yk+1 = Yk − αk∇ fM(yk) − αkξk + αkEk for all k ≥ 1.

where ξk := PTM(Yk)(νk) and Ek is an error sequence. Moving to Ek, let us show that the

error sequence satisfies the assumptions of the theorem. To that end, Proposition 4.3.2

shows that for δ sufficiently small, there exists C > 0 such that for all n ≥ k0, we have

E

1τk0 ,δ=∞

∞∑
k=n

αk∥Ek∥

 ≤ C
∞∑

k=n

α2
k .

Moreover, by the Part 2(a)i from Proposition 4.3.2, the sequence ∥Ek∥1τk0 ,δ>k is bounded

above by a bounded sequence that almost surely converges to zero:

∥Ek∥1τk0 ,δ>k ≤ C(1 + ∥νk∥)2(dist(xk,M) + αk)1τk0 ,δ>k ≤ C(1 + r)2(δ + αk),
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Thus, on the event {τk0,δ = ∞}, we have

lim sup
k

1Ω0E[∥Ek∥
4 | Fk] ≤ lim sup

k
E[∥Ek∥

41τk0 ,δ>k | Fk] ≤
(
C(1 + r)2(δ + αk)

)4
.

Therefore, Yk and Ek satisfy the conditions 1 and 3 of Theorem 4.4.1 for all sufficiently

small δp satisfying δp ≤ ϵp/8.

To conclude the proof, we now show that Condition 2 of Theorem 4.4.1 is satisfied.

To that end, clearly ∥ξk∥ = ∥PTk(νk)∥ ≤ r =: c3 for all k ≥ k0. In addition, we have that

E [ξk | Fk] = PTk(E [νk | Xk0 , . . . , Xk]) = 0.

Indeed, this follows from two facts: first Yk is a measurable function of Xk; and second

the noise sequence νk is mean zero and independent of Xk0 , . . . , Xk. Finally, we must

show that ξk has positive correlation with the unstable subspace Wp.

To prove correlation with the unstable subspace, recall that there exists C′ > 0 such

that the mapping x 7→ PTM(x) is C′-Lipschitz mapping onM∩ Bϵp(p). In addition, we

have that Wp ⊆ TM(p). Therefore, since Yk ∈ M ∩ Bϵp(p) for all k ≥ k0, we have the

following bound for all w ∈ W ∩ Sd−1:

E[| ⟨ξk,w⟩ | | Fk] = E[| ⟨νk, PTM(Yk)w⟩ | | Fk]

≥ E[| ⟨νk,w⟩ | | Fk] − r∥(PTM(Yk) − PTM(p))w∥

≥ rcd − rC′∥Yk − p∥,

where cd is a constant dependent only on d since νk ∼ Unif(Br(0)). By slightly shrinking

ϵp if needed, we can ensure that infx∈Bϵp (p){rcd − rC′∥x− p∥} > (1/2)rcd =: c4, as desired.
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CHAPTER 5

ASYMPTOTIC NORMALITY AND OPTIMALITY IN STOCHASTIC

NONSMOOTH/CONSTRAINED OPTIMZATION

5.1 Introduction

Polyak and Juditsky [15] famously showed that the stochastic gradient method for min-

imizing smooth and strongly convex functions enjoys a central limit theorem: the error

between the running average of the iterates and the minimizer, normalized by the square

root of the iteration counter, converges to a normal random vector. Moreover, the asymp-

totic covariance matrix is in a precise sense “optimal” among any estimation procedure.

A long-standing open question is whether similar guarantees – asymptotic normality

and optimality – exist for nonsmooth optimization and, more generally, for equilibrium

problems. In this part, we obtain such guarantees under mild conditions that hold both

in concrete circumstances (e.g. nonlinear programming) and under generic linear per-

turbations.

The types of problems we will consider are best modeled as stochastic variational

inequalities. Setting the stage, consider the task of finding a solution x⋆ of the inclusion

0 ∈ E
z∼P

[A(x, z)] + NX(x). (5.1.1)

Here, P is a probability distribution accessible only through sampling, A(·, z) is a smooth

map for almost every z ∼ P, and NX(x) denotes the normal cone to a closed set X.

Stochastic variational inequalities (5.1.1) are ubiquitous in contemporary optimization.

For example, optimality conditions for constrained optimization problems

min
x
E

z∼P
f (x, z) subject to x ∈ X,
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fit into the framework (5.1.1) by setting A(x, z) = ∇ f (x, z) in (5.1.1). More generally

still, Nash equilibria x⋆ = (x⋆1 , . . . , x
⋆
m) of stochastic games are solutions of the system

x⋆j ∈ argmin
x j∈X j

E
z∼P

[ f j(x, z)] for all j = 1, . . . ,m,

where f j and X j, respectively, are the loss function and the strategy set of player j. First

order optimality conditions for these k coupled inclusions can be modeled as (5.1.1) by

setting [A(x, z)] j := ∇x j f j(x, z) and X := X1, . . . ,Xm.

There are two standard strategies for solving (5.1.1): sample average approximation

(SAA) and the stochastic forward-backward algorithm (SFB). The former proceeds by

drawing a batch of samples z1, z2, . . . , zk
iid
∼ P and finding a solution xk to the empirical

approximation

0 ∈
1
k

k∑
i=1

[A(x, zi)] + NX(x). (5.1.2)

In contrast, the stochastic forward-backward (SFB) algorithm proceeds in an online

manner, drawing a single sample zk ∼ P in each iteration k and declaring the next

iterate xk+1 as

xk+1 ∈ PX(xk − αk · A(xk, zk)). (5.1.3)

Here, PX(·) denotes the nearest-point projection onto X. In the case of constrained op-

timization, A(x, z) = ∇ f (x, z) is the gradient of some loss function f (x, z), and the pro-

cess (5.1.3) reduces to the stochastic projected gradient algorithm. Online algorithms

like SFB are usually preferable to SAA since each iteration is inexpensive and can be

performed online, whereas SAA requires solving the auxiliary optimization problem

(5.1.2). Although the asymptotic distribution of the SAA estimators is by now well-

understood [87–89], our understanding of the asymptotic performance of the SFB iter-

ates is limited in nonsmooth and constrained settings. The goal of this part is to fill this

gap. The main result is the following.
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Under reasonable assumptions, the running average of the SFB iterates ex-

hibits the same asymptotic distribution as SAA. Moreover, both SAA and

SFB are asymptotically optimal in a locally minimax sense of Hájek and Le

Cam [17, 18].

We next describe our results, and their consequences, in some detail. Namely, it

is classically known (e.g. [87–89]) that the asymptotic performance of SAA (5.1.2) is

strongly influenced by the sensitivity of the solution x⋆ to perturbations of the left-

hand-side of (5.1.1). In order to isolate this effect, let S (v) consist of solutions x to the

perturbed system

v ∈ E
z∼P

[A(x, z)] + NX(x).

Throughout, we will assume that the solutions S (v) vary smoothly near x⋆. More pre-

cisely, we will assume that the graph of S locally around (0, x⋆) coincides with the

graph of some smooth map σ(·). In the language of variational analysis [90], the map

σ(·) is called a smooth localization of S around (0, x⋆). It is known that this assumption

holds in a variety of concrete circumstances and under generic linear perturbations of

semialgebraic problems [59].

Let us next provide the context and state our results. It is known from [87, 88] that

under mild assumptions, the solutions xk of SAA (5.1.2) are asymptotically normal:

√
k(xk − x⋆)

D
−→ N(0,∇σ(0) · Cov(A(x⋆, z)) · ∇σ(0)⊤). (5.1.4)

Thus the Jacobian of the solution map ∇σ(0) appears in the asymptotic covariance of the

SAA estimator. In fact, we will argue that this is unavoidable. Our first contribution is

that we prove that the asymptotic performance of SAA is locally minimax optimal—in

the sense of Hájek and Le Cam [17, 18]—among all estimation procedures. Roughly

speaking, this means that for any estimation procedure that outputs x̂k based on k sam-

ples, there exists a sequence of perturbations Pk with dPk
dP = 1 + O(k−1/2), such that the
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performance of x̂k on the perturbed sequence of problems is asymptotically no better

than the performance of SAA on the perturbed problems. We note that the analogous

lower bound for stochastic nonlinear programming was obtained earlier in [16], and our

arguments are motivated by the techniques therein. The fact that the SFB algorithm for

smooth problems is asymptotically optimal was proved in [91, Theorem 5.6] by verify-

ing that the averaged iterates of SFB have the same asymptotic limit as SAA; we follow

a similar argument here.

Aside from the lower bound, the main result of this chapter is to show that un-

der reasonable assumptions, the running average of the SFB iterates enjoys the same

asymptotics as (5.1.4) and is thus asymptotically optimal.

The guarantees we develop are already interesting for stochastic nonlinear program-

ming:

min
x

f (x) = E
z∼P

[ f (x, z)] subject to gi(x) ≤ 0 ∀i = 1, . . . ,m. (5.1.5)

Here each gi is a smooth function and the map x 7→ f (x, z) is smooth for a.e. z ∼ P.

The optimality conditions for this problem can be modeled as the variational inequal-

ity (5.1.1) under the identification A(x, z) = ∇ f (x, z) and X = {x : gi(x) ≤ 0 ∀i =

1, . . . ,m}. The stochastic forward-backward algorithm then becomes the stochastic pro-

jected gradient method. Our results imply that under the three standard conditions—

linear independence of active gradients, strict complementarity, and strong second-order

sufficiency—the running average of the SFB iterates x̄k =
1
k

∑k
i=1 xi is asymptotically

normal and optimal:

√
k(x̄k − x⋆)

D
−→ N (0,∇σ(0) · Cov(∇ f (x⋆, z)) · ∇σ(0)) .

Moreover, as is classically known, the Jacobian ∇σ(0) admits an explicit description as

∇σ(0) = (PT∇2
xxL(x⋆, y⋆)PT )†, (5.1.6)
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Figure 5.1: The stochastic projected gradient method for minimizing Eg[−x1 + ⟨g, x⟩]
over the intersection of two balls centered around (−1, 0, 0) and (1, 0, 0) of radius two.
The expectation is taken over a Gaussian g ∼ N(0, I). The optimal solution (0, 0,

√
3)

(marked with a star) lies on the active manifoldM, which is a circle depicted in black.
The figure on the top left depicts the iterates generated by a single run of the process
initialized at the origin with stepsize ηk = k−3/4 and executed for 1000 iterations. The
figure on the top right depicts the rescaled deviations

√
k(x̄K − x⋆) taken over 100 runs

with K = 106. The two figures clearly show that the iterates rapidly approach the active
manifold and asymptotically the deviations

√
k(x̄k − x⋆) are supported only along the

tangent space toM at x⋆. The two figures on the second row show the histogram and
the empirical CDF, respectively, of the tangent components

√
kPTM(x⋆)(x̄k− x⋆), overlaid

with the analogous functions for a Gaussian.
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where ∇2
xxL(x⋆, y⋆) is the Hessian of the Lagrangian function, the symbol † denotes

the Moore-Penrose pseudoinverse, and PT is the projection onto the linear subspace

{∇gi(x⋆)}⊥i∈I and I = {i : gi(x⋆) = 0} is the set of active indices. An illustrative ex-

ample of the announced result is depicted in Figure 5.1, which plots the performance

of the projected stochastic gradient method for minimizing a linear function over the

intersection of two balls. A further illustration for a nonconvex problem of sparse re-

covery is depicted in Figure 5.2. This result may be surprising in light of the existing

literature. Namely, Duchi and Ruan [16] uncover a striking gap between the estimation

quality of SAA and at least one standard online method, called dual averaging [92, 93],

for stochastic nonlinear optimization. Indeed, even for the problem of minimizing the

expectation of a linear function over a ball, the dual averaging method exhibits a sub-

optimal asymptotic covariance [16, Section 5.2].1 In contrast, we see that the stochastic

projected gradient method is asymptotically optimal.

Let us now return to the general problem (5.1.1) and the stochastic forward-

backward algorithm (5.1.3). In order to derive the claimed asymptotic guarantees for

SFB, we will impose a few extra assumptions. First, in addition to assuming that σ(·) is

smooth near the origin, we will assume that there exists a neighborhood U of the origin

such that σ(U) is a smooth manifold. This assumption is mild, since it holds automati-

cally for example if the matrix ∇σ(·) has constant rank on a neighborhood of the origin.

With these assumptions, the setM = σ(U) is an active manifold around x̄ [6]. Return-

ing to the case of stochastic nonlinear programming, the active manifold is simply the

zero-set of the active inequalities

M = {x : gi(x) = 0 ∀i ∈ I}.

See Figure 5.1 for an illustration.

1In contrast, in the special case that X is polyhedral and convex, the dual averaging method is opti-
mal [16].
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Figure 5.2: The stochastic projected gradient method for minimizing E(a,b)[(⟨a, x⟩ − b)2]
over the ℓ0 ballX = {x : ∥x∥0 ≤ 2}. Here a ∼ N(0, I) and b = ⟨a, x⋆⟩+g where g ∼ N(0, 1)
and x⋆ := e1+e2, the sum of the first two standard basis vectors; in this example, d = 20.
The optimal solution x⋆ lies on the active manifoldM = span{e1, e2}. The figure on the
left depicts a kernel density estimation of the rescaled deviations

√
K · PTM(x⋆)(x̄K − x⋆)

taken over 1000 runs of SGD (Gaussian kernel, bandwidth .5); here, the method is
initialized at the origin with stepsize ηk = k−3/4 and ran for K = 106 iterations. The figure
on the right depicts the rescaled normal deviations ∥

√
K · PNM(x⋆)(x̄K − x⋆)∥/

√
d. Taken

together, the figures again show that the iterates rapidly approach the active manifold
and asymptotically the deviations

√
k(x̄k − x⋆) are supported only along the tangent

space toM at x⋆.

The main idea of our argument is to relate the nonsmooth dynamics of SFB to a

smooth stochastic approximation algorithm on M, which is similar to the techniques

used in saddle avoidance results. More precisely, we will show that under mild condi-

tions, the shadow sequence yk := PM(xk) along the manifoldM behaves smoothly up to

a small error

yk+1 = yk − αkPTM(yk)(A(yk, zk)) + o(αk), (5.1.7)

where TM(yk) denotes the tangent space ofM at yk. We note that in the constrained op-

timization setting, the iteration (5.1.7) becomes an inexact Riemannian gradient method

on the restriction of f toM. Consequently, we may build on the techniques of Polyak

and Juditsky [15] to obtain the asymptotics of the shadow sequence yk, and then infer

information about the original iterates xk.
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The validity of (5.1.7) relies on two regularity conditions – (b)-regularity and strong

(a)-regularity, which were introduced in Chapter 3 and applied in Chapter 4. We refer

readers to the end of section 4.1.1 for a detailed discussion. As we see below, both

regularity conditions hold automatically for stochastic nonlinear programming.

5.1.1 Outline of the chapter.

The outline of the rest of the chapter is as follows. Section 5.2 discusses nonlinear pro-

gramming and l1-regulization, two main examples in this chapter. Section 5.3 introduces

the notation of smoothly invertible maps. The existence of smooth localizations σ(·) is

a central assumption of this chapter. Section 5.4 develops asymptotic convergence guar-

antees for SAA, which motivate much of the subsequent sections. Section 5.5 presents

the classes of algorithms that we consider. Section 5.6 states the main result on asymp-

totic normality of iterative methods. Section 5.7 present shows that SAA and SFB are

both asymptotically local minimax optimal in the sense of Hájek and Le Cam. This

chapter is based on the work [26].

5.2 Examples: nonlinear programming and l1-regularization

Although (b) and strong (a)-regularity conditions for functions were defined in Chap-

ter 3. We refer readers to Theorem 3.1.4 and Theorem 3.1.6. The two regularity con-

ditions easy extend to sets through their indicator functions. Namely, we say that a set

Q ⊂ Rd is (b≤)-regular (respectively strongly (a)-regular) along a C1 manifoldM ⊂ Q

at x̄ ∈ M if the indicator function δQ is (b≤)-regular (respectively strongly (a)-regular)

alongM at x̄.
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Chapter 3 presents a wide array of functions that admit active manifolds along which

both conditions (b≤) and strong (a) hold. Here, we discuss in detail examples of nonlin-

ear programming and l1-regularization.

Example 5.2.1 (Nonlinear programming). Consider the problem of nonlinear program-

ming

min
x

f (x)

s.t. gi(x) ≤ 0 for i = 1, . . . ,m

gi(x) = 0 for i = m + 1, . . . , n,

(5.2.1)

where f and gi are Cp-smooth functions on Rd. Let X denotes the set of all feasible

points to the problem. Consider now a point x̄ ∈ X that is critical for the function f + δX

and define the active index set

I = {i : gi(x̄) = 0}.

Suppose the following is true:

• (LICQ) the gradients {∇gi(x̄)}i∈I are linearly independent.

Then the set

M = {x : gi(x) = 0 ∀i ∈ I}

is a Cp smooth manifold locally around x̄. Moreover, all three functions f , δX, and f +δX

are (b≤)-regular and strongly (a)-regular alongM near x̄. In order to ensure thatM is an

active manifold of f +δX, an extra condition is required. Define the Lagrangian function

L(x, y) := f (x) +
n+m∑
i=1

yigi(x).

Criticality of x̄ and LICQ ensures that there exists a (unique) Lagrange multiplier vector

ȳ ∈ Rm
+ × R

n satisfying ∇xL(x̄, ȳ) = 0 and ȳi = 0 for all i < I. Suppose the following

standard assumption is true:
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• (Strict complementarity) ȳi > 0 for all i ∈ I ∩ {1, . . . ,m}.

ThenM is indeed an active Cp manifold for f + δX at x̄.

Example 5.2.2 (ℓ1-regularization). Consider the stochastic optimization problem with

ℓ1 regularization

min
x

g(x) = f (x) + λ∥x∥1, (5.2.2)

where f (x) = Ez∈P[ f (x, z)] is a Cp-smooth function in Rd. Consider now a point x̄ ∈ Rd

that is critical for the function g and define the index set I = {i : x̄i = 0}. Then the set

M = {x : xi = x̄i, ∀i ∈ I}

is an affine space, hence a smooth manifold. Note that the definition of criticality ensures

that 0 ∈ ∂g(x̄), so we always have

−(∇ f (x))i ∈ [−λ, λ], ∀i ∈ I.

Suppose the following condition is true:

• (Strict complementarity) −(∇ f (x))i ∈ (−λ, λ) for all i ∈ I.

ThenM is indeed an active Cp manifold for g at x̄. Moreover, (b≤)-regularity and strong

(a)-regularity hold trivially for g alongM at x̄.

5.3 Smoothly invertible maps and active manifolds

Performance of statistical estimation procedures strongly depends on the sensitivity of

the problem to perturbation. A variety of estimation problems can in turn be modeled as
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the task of solving an inclusion 0 ∈ F(x) for some set-valued map F, whose values we

can only approximate by sampling. We next review basic perturbation theory based on

the inverse/implicit function theorem paradigm, while closely following the monograph

[90].

A set-valued map F : Rd ⇒ Rm is an assignment that maps a point x ∈ Rd to a set

F(x) ⊂ Rm. Set-valued maps always admit a set-valued inverse:

F−1(y) = {x : y ∈ F(x)}.

The domain and graph of F are defined, respectively, as

dom F := {x : F(x) , ∅} and gph F := {(x, y) : y ∈ F(x)}.

We will be interested in the sensitivity of the solutions to the system v ∈ F(x) with

respect to perturbations of the left-hand-side v, or equivalently, the variational behavior

of the map v 7→ F−1(v). In particular, we will be interested in settings when the graph of

F−1 coincides locally around a base point (v, x) with a graph of a smooth map. This is

the content of the following definition.

Definition 5.3.1 (Smooth invertibility). Consider a set-valued map F : Rd ⇒ Rm and a

pair (x̄, v̄) ∈ gph F. We say that F is Cp invertible around (x̄, v̄) with inverse σ(·) if there

exists a single-valued Cp-smooth map σ(·) and a neighborhood U of (v̄, x̄) satisfying

U ∩ gph F−1 = U ∩ gphσ.

The definition might seem odd at first: there is nothing “smooth” about F, and yet

we require the graph of F−1 to coincide with a graph of a smooth function near (v̄, x̄).

On the contrary, we will see that in a variety of settings this assumption is indeed valid.

In particular, smooth invertibility is typical in nonlinear programing.
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Example 5.3.1 (Nonlinear programming). Returning to Example (5.2.1) with p ≥ 2,

define the set-valued map

F(x) = ∇ f (x) + NX(x).

Then it is classically known that F is Cp−1 invertible at (x̄, 0) if and only if the matrix

Σ := PTM(x̄)∇
2
xxL(x̄, ȳ)PTM(x̄)

is nonsingular on TM(x̄). In this case, the Jacobian of the inverse map is ∇σ(0) = Σ†,

where † denotes the Moore-Penrose pseudoinverse. It is worthwhile to note that Σ can

be equivalently written as PTM(x̄)∇
2
M

f (x̄)PTM(x̄).

Example 5.3.2 (ℓ1-regularization). Returning to Example (5.2.2) with p ≥ 2, define the

set-valued map F(x) = ∇ f (x) + λ∂(∥ · ∥1)(x). Then F is Cp−1 invertible at (x̄, 0) if and

only if the matrix Σ := PTM(x̄)∇
2 f (x̄)PTM(x̄) is nonsingular on TM(x̄).

Smooth invertibility is closely tied to active manifolds, and Example 5.3.1 and Ex-

ample 5.3.2 are simple consequences. Indeed the following much more general state-

ment is true. This result follows from a standard argument combining active manifolds

and the implicit function theorem. The proof appears in Section 7.2.1 of the supple-

mentary document. We will require a mild assumption on the considered functions.

Following [64, Definition 2.1] a function f is called subdifferentially continuous at a

point x̄ if for any sequences (xi, vi) ∈ gph ∂ f converging to some pair (x̄, v̄) ∈ gph ∂ f ,

the function values f (xi) converge to f (x̄). In particular, functions that are continuous

on their domains and closed convex functions are subdifferentially continuous.

Theorem 5.3.2 (Smooth Invertibility and Active Manifolds). Consider the map

F(x) := A(x) + ∂ f (x),

where A : Rd → Rd is Cp-smooth and f : Rd → R ∪ {∞} is subdifferentially continuous

near a point x̄. Suppose that f admits a Cp+1 active manifold M at some point x̄ for
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−A(x̄) ∈ ∂̂ f (x̄). Let G(x) = 0 be any Cp+1-smooth local defining equations forM near

x̄ and let f̂ be a Cp+1-smooth function that agrees with f on a neighborhood of x̄ inM.

Define the map

H(x, y) := A(x) + ∇ f̂ (x) + ∇G(x)⊤y.

Then there exists a unique multiplier vector ȳ satisfying the condition 0 = H(x̄, ȳ).

Moreover, F is Cp-invertible around (0, x̄) with inverse σ(·) if and only if the matrix

Σ := PTM(x̄)∇xH(x̄, ȳ)PTM(x̄)

is nonsingular on TM(x̄), and in this case equality ∇σ(0) = Σ† holds.

5.4 Asymptotic normality of SAA

Before analyzing the asymptotic performance of stochastic approximation algorithms, it

is instructive to first recall guarantees for sample average approximation (SAA), where

the assumptions, conclusions, and arguments are much simpler to state. This is the

content of this section: we derive the asymptotic distribution of the SAA estimator for

nonsmooth problems.Throughout the section we focus on the problem of finding a point

x⋆ satisfying the variational inclusion:

0 ∈ A(x) + H(x) where A(x) = E
z∼P

A(x, z). (5.4.1)

Here H : Rd ⇒ Rd is a set-valued map with closed graph, P is a fixed probability distri-

bution on some measure space (Z ,F ), and A : Rd ×Z → Rd is a measurable map. We

will impose the following assumption throughout the rest of the section.

Assumption G. The map F := A + H is C1-smoothly invertible near (0, x̄) with inverse

σ(·).
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The SAA approach to solving (5.4.1) proceeds as follows. Let S = {z1, . . . , zk} be

i.i.d samples drawn from P and let xk be a solution of the problem

0 ∈ AS (x) + H(x) where AS (x) :=
1
k

k∑
i=1

A(x, zi), (5.4.2)

assuming one exists. We will now show that the solutions of sample average approxima-

tions are asymptotically normal with covariance ∇σ(0) · Cov(A(x̄, z)) · ∇σ(0)⊤. Though

variants of this result are known [87–89], we provide a short proof in Section 7.2.2 of

the supplementary document highlighting the use of the solution map σ(·). To this end,

we impose the following standard assumption.

Assumption H (Integrability and smoothness). Suppose that there exists a neighbor-

hood U around x̄ satisfying the following.

1. For almost every z, the map A(·, z) is differentiable at every x ∈ U.

2. The second moment bounds hold:

sup
x∈U
E

z∼P
∥A(x, z)∥2 < ∞ and sup

x∈U
E

z∼P

[
∥∇A(x, z)∥2op

]
< ∞.

The following theorem shows that as long as xk eventually stay in a sufficiently

small neighborhood of x̄, the error
√

k(xk − x̄) is asymptotically normal with covariance

∇σ(0) · Cov(M(x̄, z)) · ∇σ(0)⊤. Verifying that the problem (5.4.2) admits solutions xk

that are sufficiently close to x̄ is a separate and well-studied topic and we do not discuss

it here.

Theorem 5.4.1 (Sample average approximation). Suppose that Assumptions G and H

hold. In particular, there exist ϵ1, ϵ2 > 0 and a C1-smooth map σ : Bϵ1(0)→ Bϵ2(x̄) with

gphσ = (Bϵ1(0) × Bϵ2(x̄)) ∩ gph F−1.

Suppose moreover that there exists a square integrable function L(z) satisfying

∥∇A(x1, z) − ∇A(x2, z)∥ ≤ L(z)∥x1 − x2∥ ∀x1, x2 ∈ Bϵ2(x̄). (5.4.3)
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Shrinking ϵ2, if necessary, let us ensure that ϵ2 ≤ min
{

lip(σ)−1

2EL ,
√

ϵ1
2EL

}
. Let S =

{z1, . . . , zk} be i.i.d samples drawn from P and let xk be a measurable selection of the

solutions (5.4.2) such that Pr[xk ∈ Bϵ2(x̄)]→ 1 as k tends to infinity. Then the expansion

holds:
√

k(xk − x̄) = −∇σ(0) ·
√

k(A(x̄) − AS (x̄)) + oP(1),

and therefore

√
k(xk − x̄)

D
−→ N(0,∇σ(0) · Cov(A(x̄, z)) · ∇σ(0)⊤). (5.4.4)

Note that Theorem 5.4.1 assumes existence of a measurable selection of the solu-

tions (5.4.2) such that Pr[xk ∈ Bϵ2(x̄)] → 1 as k tends to infinity. This is a very mild

assumption and follows for example from uniform convergence and smooth invertibil-

ity.

Theorem 5.4.2 (Existence of measurable selections). Suppose that F is C1-smoothly

invertible around near (0, x̄) and that A(x, z) and ∇A(x, z) converge uniformly on some

ball around x̄, that is there exists ϵ > 0 such that

sup
x∈Bϵ (x̄)

∥∇AS (x) − ∇A(x)∥ = op(1) and sup
x∈Bϵ (x̄)

∥AS (x) − A(x)∥ = op(1).

Then there exists δ > 0 and a measurable selection of the solutions (5.4.2) such that

Pr[xk ∈ Bδ(x̄)]→ 1 as k tends to infinity.

Proof. Standard results on the implicit function theorem (see proof of [90, Theo-

rem 3G.3]) imply that there exist sufficiently small ε2, ε3 > 0 such that whenever

supx∈Bϵ (x̄) ∥AS (x) − A(x)∥ < ε2 and supx∈Bϵ (x̄) ∥∇AS (x) − ∇A(x)∥ < ε2, the map AS + H

is guaranteed to be smoothly invertible on Bε3(x̄) × Bε3(0). In particular, the solution
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xk ∈ Bε3(x̄) of (5.4.2) exists and is unique. To see measurability of xk, observe that

the maps AS and H are both measurable [28, Exercise 14.9] and therefore so is the

map D(S ) = gph(AS + H). Notice now that xk(S ) uniquely satisfies the inclusion

(xk(S ), 0) ∈ D(S ). Therefore, [28, Theorem 14.16] implies that xk is measurable. □

Our goal in the rest of the chapter is to show that a simple online algorithm, namely

the stochastic forward backward (SFB) method, under reasonable assumptions enjoys

the same guarantees as (5.4.4) for SAA. Moreover, in the final section of the chapter

(Section 5.7), we will show that this performance is best possible among any estimation

procedure in a local minimax sense, and therefore both SAA and SFB are asymptotically

local minimax optimal.

5.5 Stochastic approximation: assumptions & examples

We now move to stochastic approximation algorithms, and in this section set forth the

algorithms we will consider and the relevant assumptions. This section can be viewed as

a generalization of Section 4.2, where everything is stated specifically for optimization

problems rather than for finding zeros of set-valued maps. The concrete examples we

will present will all be geared toward’ solving variational inclusions, but the specifics of

this problem class are somewhat distracting. Therefore we will instead only isolate the

essential ingredients that are needed for our results to take hold. Setting the stage, our

goal is to find a point x satisfying the inclusion

0 ∈ F(x), (5.5.1)

where F : Rd ⇒ Rd is a set-valued map. Throughout, we fix one such solution x̄ of

(5.5.1). We will assume that in a certain sense, the problem (5.5.1) is “variationally
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smooth”. That is, there exists a distinguished manifoldM—the active manifold in con-

crete examples—containing x̄ and such that the map x 7→ PTM(x)F(x) is single-valued

and C1-smooth onM near x̄. The following assumption makes this precise.

Assumption I (Smooth reduction). Suppose that there exists a Cp manifold M ⊂ Rd

such that the following properties are true.

(I1) The map FM : M→ Rd defined by

FM(x) := PTM(x)F(x)

is single-valued on some neighborhood of x̄ inM.

(I2) There exists a neighborhood U of (x̄, 0) such that

U ∩ gph F = U ∩ gph (FM + NM).

We note that smooth invertibility of F can be easily characterized in terms of the

covariant Jacobian ∇MFM(x̄). This is the content of the following lemma.

Lemma 5.5.1 (Jacobian of the solution map). The map F is Cp-smoothly invertible

around (x̄, 0) with localization σ(·) if and only if the linear map PTM(x̄)∇FM(x̄)PTM(x̄) is

nonsingular on TM(x̄). In this case, the Jacobian of the localization is given by

∇σ(0) = (PTM(x̄)∇MFM(x̄)PTM(x̄))†.

Proof. Let Φ be a smooth extension of F to a neighborhood V ⊂ Rd of x̄. In light of

Assumption (I2), the graphs of F and Φ + NM coincide near (x̄, 0), and therefore we

can focus on existence of smooth localizations of (Φ + NM)−1. Applying Lemma 7.2.2

with ȳ = 0, we see that Φ + NM is Cp-smoothly invertible around (x̄, 0) if and only

if the linear map PTM(x̄)∇Φ(x̄)PTM(x̄) is nonsingular on TM(x̄). In this case, the Jaco-

bian of the localization is given by ∇σ(0) = (PTM(x̄)∇Φ(x̄)PTM(x̄))†. Noting the equality

∇FM(x̄)PTM(x̄) = ∇MΦ(x̄)PTM(x̄) completes the proof. □
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The stochastic approximation algorithms we consider assume access to a generalized

gradient mapping:

G : R++ × Rd × Rd → Rd.

Given x0 ∈ R
d, the algorithm iterates the update

xk+1 = xk − αkGαk(xk, νk), (5.5.2)

where αk > 0 is a control sequence and νk is stochastic noise. We will place relevant

assumptions on the noise νk later in Section 5.6.

We make two assumptions on G. The first (Assumption J) is similar to classical

Lipschitz assumptions and ensures the steplength can only scale linearly in ∥ν∥.

Assumption J (Steplength). We suppose that there exists a constant C > 0 and a neigh-

borhoodU of x̄ such that the estimate

sup
x∈UF

∥Gα(x, ν)∥ ≤ C(1 + ∥ν∥),

holds for all ν ∈ Rd and α > 0, where we setUF := U ∩ dom F.

The second assumption makes precise the relationship between the mapping G and

FM.

Assumption K (Strong (a) and aiming). We suppose that there exist constants C, µ > 0

and a neighborhoodU of x̄ such that the following hold for all ν ∈ Rd and α > 0, where

we setUF := U ∩ dom F.

(K1) (Tangent comparison) For all x ∈ UF , we have

∥PTM(PM(x))(Gα(x, ν) − F(PM(x)) − ν)∥ ≤ C(1 + ∥ν∥)2(dist(x,M) + α).
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(K2) (Proximal Aiming) For x ∈ UF , we have

⟨Gα(x, ν) − ν, x − PM(x)⟩ ≥ µ · dist(x,M) − (1 + ∥ν∥)2(o(dist(x,M)) +Cα).

Some comments are in order. Assumption (K1) ensures that the direction of mo-

tion Gαk(xk, νk) approximates well FM(PM(x)) in tangent directions to the manifoldM.

Assumption (K2) ensures that after subtracting the noise from Gαk(xk, νk), the update

direction xk − xk+1 locally points towards the manifoldM. Note that the little-o term in

(K2) depends only on dist(x,M) and not on α. We will later show that this ensures the

iterates xk approach the manifoldM at a controlled rate.

5.5.1 Examples of stochastic approximation for variation inclusions

The rest of the section is devoted to examples of algorithms satisfying Assumptions J

and K. In all cases, we will consider the task of solving the variational inclusion

0 ∈ A(x) + ∂g(x) + ∂ f (x). (5.5.3)

Here A : Rd → Rd is any single-valued continuous map, f : Rd → R is a closed function,

and g : Rd → R is a closed function that is bounded from below.2 As explained in the

introduction, variational inclusions encompass a variety of problems, most-notably first-

order optimality conditions for nonlinear programming and Nash equilibria of games.

In order to identify (5.5.3) with (5.5.1), we define the set-valued map F to be

F(x) := A(x) + ∂g(x) + ∂ f (x).

Throughout, we fix a point x⋆ satisfying the inclusion (5.5.3).

2In particular, proxα f (x) is nonempty for all x ∈ Rd and all α > 0.
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A classical algorithm for problem (5.5.3) is the stochastic forward-backward iter-

ation, which proceeds by taking “forward-steps” on A + ∂g and proximal steps on f .

Specifically, given a current iterate xt, the algorithm performs the update
Choose wt ∈ ∂g(xt)

Choose xt+1 ∈ proxαt f (xt − αt(A(xt) + wt + νt))

 , (5.5.4)

where νt is a noise sequence. The operator Gα(x, ν) corresponding to this algorithm is

simply

Gα(x, ν) :=
x − s f (x − α(A(x) + sg(x) + ν))

α
,

where sg(x) is any selection of the subdifferential ∂g(x) and s f (x) is any selection of the

proximal map proxα f (x). The goal of this section is to verify Assumption K for this

operator under a number of reasonable assumptions on A, g, and f .

In particular, the local boundedness condition J for G is widely used in the literature,

with a variety of sufficient conditions known. The following lemma describes a number

of such conditions, which we will use in what follows. The proof appear in Section 7.2.3

of the supplementary document.

Lemma 5.5.2 (Local boundedness). Suppose that A(·) and sg(·) are locally bounded

around x̄. Then Assumption J is guaranteed to hold in any of the following settings.

1. f is the indicator function of a closed set X.

2. f is convex and the function x 7→ dist(0, ∂ f (x)) is bounded on dom f near x̄.

3. f is Lipschitz continuous on dom g ∩ dom f .

We next verify Assumption K in a number of reasonable settings; all proofs appear

in the supplementary document. In particular, it will be useful to note the following

expression for FM. We will use this lemma throughout the section, without explicit

reference.
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Lemma 5.5.3 (Local tangent reduction). Suppose that f and g are Lipschitz continuous

on their domains, A is Cp-smooth, f +g admits an active Cp+1 manifold at x⋆ for −A(x⋆),

and f and g are both Cp+1-smooth and strongly (a) regular along M near x⋆. Then

Assumption I holds and FM admits the simple form

FM(x) = PTM(x)(A(x)) + ∇Mg(x) + ∇M f (x), (5.5.5)

for all x ∈ M near x⋆.

5.5.1.1 Stochastic forward algorithm ( f = 0)

We begin with the simplest case of (5.5.3) where f = 0. In this case, the iteration (5.5.2)

reduces to a pure stochastic forward algorithm and the map G takes the simple form

Gα(x, ν) := A(x) + sg(x) + ν,

which is independent of α. Let us introduce the following assumption on the problem

data.

Assumption L (Assumptions for the forward algorithm). Suppose that f = 0 and that

both g(·) and A(·) are Lipschitz continuous around x̄. Suppose that M ⊆ X is a Cp-

smooth manifold for g at x̄.

(L1) (Strong (a)) The function g is strongly (a)-regular alongM at x̄.

(L2) (Proximal aiming) There exists µ > 0 such that the inequality holds:

⟨A(x̄) + v, x − PM(x)⟩ ≥ µ · dist(x,M) for all x near x̄ and v ∈ ∂g(x).

(5.5.6)

Note that Corollary 3.1.5 shows that the aiming condition (L2) holds as long as the

inclusion −A(x̄) ∈ ∂̂g(x̄) holds,M is an active manifold for g at x̄ for v = −A(x̄), and g is
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(b≤)-regular alongM at x̄. The following proposition shows that Assumption L suffices

to ensure Assumption K. The proof appears in the supplementary document.

Proposition 5.5.4 (Forward method). Assumption L implies Assumption K.

The following is now immediate.

Corollary 5.5.5 (Active manifolds). Suppose f = 0 and that both g(·) and A(·) are

Lipschitz continuous around x̄. Suppose moreover that the inclusion −A(x̄) ∈ ∂̂g(x̄)

holds, that g admits a C2 active manifold around x̄ for v̄ = −A(x̄), and that g is both

(b)≤-regular and strongly (a)-regular alongM at x̄. Then Assumption K holds.

5.5.1.2 Stochastic projected forward algorithm ( f = δX)

Next, we focus on the particular instance of (5.5.3) where f is an indicator function of a

closed set X. In this case, the iteration (5.5.2) reduces to a stochastic projected forward

algorithm and the map G takes the form

Gα(x, ν) :=
x − sX(x − α(A(x) + sg(x) + ν))

α
,

where sX(x) is a selection of the projection map PX(x). In order to ensure Assumption K

for the stochastic projected forward method, we introduce the following assumption.

Assumption M (Assumptions for the projected gradient mapping). Suppose that f is

the indicator function of a closed set X and both g(·) and A(·) are Lipschitz continuous

around x̄. LetM ⊆ X be a C2 manifold containing x̄ and suppose that f is C2 on M

near x̄.

(M1) (Strong (a)) The function g and set X are strongly (a)-regular alongM at x̄.

119



(M2) (Proximal aiming) There exists µ > 0 such that the inequality holds

⟨A(x̄) + v, x − PM(x)⟩ ≥ µ · dist(x,M) ∀ x ∈ X near x̄ and v ∈ ∂g(x).

(5.5.7)

(M3) (Condition (b)) The set X is (b≤)-regular alongM at x̄.

Note that a similar argument as Corollary 3.1.5 shows that the aiming condition (M2)

holds as long as the inclusion −A(x̄) ∈ ∂̂(g + f )(x̄) holds, M is an active manifold of

g + f at x̄ for v = −A(x̄), and g is (b≤)-regular alongM at x̄.

The following proposition shows that Assumption M is sufficient to ensure Assump-

tion K.

Proposition 5.5.6 (Projected forward method). If Assumptions J and M hold, then so

does Assumption K.

The following is now immediate.

Corollary 5.5.7 (Active manifolds). Suppose that f is the indicator function of a closed

set X and both g(·) and A(·) are Lipschitz continuous around x̄. Suppose moreover the

inclusion −A(x̄) ∈ ∂̂(g+ f )(x̄) holds, g+ f admits a C2 active manifold around x̄ for the

vector v̄ = −A(x̄), and both g and f are (b≤)-regular and strongly (a)-regular alongM

at x̄. Then Assumption K holds.

5.5.1.3 Stochastic forward-backward method (g = 0)

Finally, we focus on the particular instance of (5.5.3) where g = 0. In this case, the

iteration (5.5.2) reduces to a stochastic forward-backward algorithm and the map G

becomes

Gα(x, ν) :=
x − s f (x − α(A(x) + ν))

α
,
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In order to ensure Assumption K for the stochastic proximal gradient method, we

introduce the following assumptions.

Assumption N (Assumptions for the forward-backward method). Suppose g = 0 and

f (·) and A(·) are Lipschitz continuous on dom f near x̄. Suppose moreover that there

exists a C2 manifoldM ⊂ X containing x̄ and such that f is C2-smooth onM near x̄.

(N1) (Strong (a)) The function f is strongly (a)-regular alongM at x̄.

(N2) (Proximal Aiming) There exists µ > 0 such that the inequality

⟨A(x̄) + v, x − PM(x)⟩ ≥ µ · dist(x,M) − (1 + ∥v∥)o(dist(x,M)) (5.5.8)

holds for all x ∈ dom f near x̄ and v ∈ ∂̂ f (x).

Note that Corollary 3.1.5 shows that the aiming condition (N2) holds as long as the

inclusion −A(x̄) ∈ ∂̂ f (x̄) holds,M is an active manifold for f at x̄ for v = −A(x̄), and f

is (b≤)-regular alongM at x̄.

The following proposition shows that Assumption N is sufficient to ensure Assump-

tion K.

Proposition 5.5.8 (Forward-backward method). If Assumptions J and N hold, then so

does Assumption K.

The following is now immediate.

Corollary 5.5.9 (Active manifolds). Suppose g = 0 and both f and A(·) are Lipschitz

continuous on dom f near x̄. Suppose moreover the inclusion −A(x̄) ∈ ∂̂ f (x̄) holds.

Suppose that f admits a C2 active manifold around x̄ for v̄ = −A(x̄) and f is both

(b)≤-regular and strongly (a)-regular alongM at x̄. Then Assumption K holds.
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5.6 Asymptotic normality

Next, we impose two assumptions on the step-size αk and the noise sequence νk. The

first is standard and is summarized next.

Assumption O (Standing assumptions). Assume the following.

(O1) The map G is measurable.

(O2) There exist constants c1, c2 > 0 and γ ∈ (1/2, 1] such that

c1

kγ
≤ αk ≤

c2

kγ
.

(O3) {νk} is a martingale difference sequence w.r.t. to the increasing sequence of σ-

fields

Fk = σ(x j : j ≤ k and ν j : j < k),

and there exists a function q : Rd → R+ that is bounded on bounded sets with

E[νk | Fk] = 0 and E[∥νk∥
4 | Fk] < q(xk).

We let Ek[·] = E[· | Fk] denote the conditional expectation.

(O4) The inclusion xk ∈ dom F holds for all k ≥ 1.

All items in Assumption E are standard in the literature on stochastic approximation

methods and mirror for example those found in [77, Assumption C]. The only exception

is the fourth moment bound on ∥νk∥, which stipulates that νk has slightly lighter tails.

This bound appears to be necessary for the setting we consider.

To prove our asymptotic normality results, we impose a further assumption on the

noise sequence νk, which also appears in [16, Assumption D]. Before stating it, as
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motivation, consider the stochastic variational inequality (5.5.3) given by:

0 ∈ A(x) + ∂ f (x) + ∂g(x) where A(x) = E
z∼P

A(x, z).

Then the noise νk in the algorithm (5.5.4) takes the form

νk = A(xk; zk) − A(xk).

Equivalently, we may decompose the right-hand-side as

νk = A(x̄; zk) − A(x̄)︸            ︷︷            ︸
=:ν(1)

k

+ (A(xk; zk) − A(x̄; zk)) + (A(x̄) − A(xk))︸                                           ︷︷                                           ︸
=:ν(2)

k (xk)

,

The two components ν(1)
k and ν(2)

k (xk) are qualitatively different in the following sense.

On one hand, the sum 1
√

k

∑k
i=1 ν

(1)
i clearly converges to a zero-mean normal vector as

long as the covariance Cov(A(x̄, z)) exists. On the other hand, ν(2)
k (xk) is small in the

sense that Ek∥ν
(2)
k (xk)∥2 ≤ 2 · Ez[L(z)2] · ∥xk − x̄∥2, where L(z) is a Lipschitz constant of

A(·, z). With this example in mind, we introduce the following assumption on the noise

sequence.

Assumption P. Fix a point x̄ ∈ dom F at which Assumption I holds and let U be a

matrix whose column vectors form an orthogonal basis of TM(x̄). We suppose the noise

sequence has decomposable structure νk = ν
(1)
k + ν

(2)
k (xk), where ν(2)

k : dom F → Rd is a

random function satisfying

Ek[∥U⊤ν
(2)
k (x)∥2] ≤ C∥x − x̄∥2 for all x ∈ dom F near x̄,

and some C > 0. In addition, we suppose that for all x ∈ dom F, we have Ek[ν
(1)
k ] =

Ek[ν
(2)
k (x)] = 0 and the following limit holds:

1
√

k

k∑
i=1

U⊤ν(1)
i

D
−→ N(0,U⊤ΣU).

for some symmetric positive semidefinite matrix Σ.
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Note that Assumption P only requires that ν(1)
k and ν(2)

k have zero conditional mean,

which is weaker than being independent of the previous iterates. We are now ready to

state the main result of this chapter—asymptotic normality for stochastic approximation

algorithms.

Theorem 5.6.1 (Asymptotic Normality). Suppose that Assumption I, J, K, E, and P

hold. Suppose that γ ∈ ( 1
2 , 1) and that the sequence xk generated by the process (4.2.2)

converges to x̄ with probability one. Suppose that there exists a constant µ > 0 satisfying

⟨∇MFM(x̄)v, v⟩ ≥ µ∥v∥2 for all v ∈ TM(x̄). (5.6.1)

Then F is Cp-smoothly invertible around (x̄, 0) with inverse σ(·) and the average iterate

x̄k =
1
k

∑k
i=1 xi admits the expansion

√
k(x̄k − x̄) = −

1
√

k

k∑
i=1

U(U⊤∇MFM(x̄)U)−1U⊤ν(1)
i + oP(1),

and hence
√

k(x̄k − x̄)
D
−→ N (0,∇σ(0) · Σ · ∇σ(0)⊤) .

Moreover, ∇σ(0) can be equivalently written as ∇σ(0) = (PTM(x̄)∇MFM(x̄)PTM(x̄))†.

The conclusion of this theorem is surprising: although the sequence xk never reaches

the manifold, the limiting distribution of
√

k(x̄k − x̄) is supported on the tangent space

TM(x̄). Thus asymptotically, the “directions of nonsmoothness,” which are normal to

M, are quickly “averaged out.” When ∥Gαk(xk, νk)∥ is bounded away from 0 for all k,

this means that xk must oscillate across the manifold, instead of approaching it from one

direction.
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5.6.1 Asymptotic normality in nonlinear programming

As a simple illustration of Theorem 5.6.1, we now spell out the consequence for the

stochastic projected gradient method for stochastic nonlinear programming, already dis-

cussed in Example 5.2.1. Namely, consider the problem (5.2.1) and let x̄ be a local min-

imizer. Suppose that gi are C3-smooth near x̄ and f takes the form f (x) = Ez∼P f (x, z) for

some probability distribution P and each function f (·, z) is C3-smooth near X. Consider

the following stochastic projected gradient method:

Sample: zk ∼ P

Update: xk+1 ∈ PX(xk − αk∇ f (xk; zk)). (5.6.2)

In order to understand the asymptotics of the algorithm, as in Example 5.2.1, let ȳ be

the Lagrange multiplier vector and suppose that LICQ and strict complementarity holds.

Suppose moreover the second-order sufficient conditions: there exists µ > 0 such that

w⊤
[
∇2

xxL(x̄, ȳ)
]
w ≥ µ∥w∥2 for all w ∈ TM(x̄). (5.6.3)

Note that, as explained in Example 5.3.1, this condition is simply the requirement that

the covariant Hessian of f := f0 + δX

∇2
M

f (x̄) = PTM(x̄)∇
2
xxL(x⋆, y⋆)PTM(x̄)

is positive definite on TM(x̄). Finally, to ensure our noise sequence

νk = ∇ f (xk; zk) − ∇ f (xk)

= ∇ f (x̄; zk) − ∇ f0(x̄)︸                 ︷︷                 ︸
=:ν(1)

k

+ (∇ f (xk; zk) − ∇ f (x̄; zk) + ∇ f (x̄) − ∇ f (xk))︸                                                 ︷︷                                                 ︸
=:ν(2)

k (xk)

,

satisfies Assumptions E and P, we assume the stochasticity is sufficiently well-behaved:
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(R) (Stochastic Gradients) As a function of x, the fourth moment

x ∈ X 7→ Ez∼P[∥∇ f (x; z) − ∇ f (x)∥4]

is bounded on bounded sets. Moreover, there exists C > 0 such that

Ez∼P[∥∇ f (x; z) − ∇ f (x̄; z)∥2] ≤ C∥x − x̄∥2 for all x ∈ X.

Finally, the gradients PTM(x̄)∇ f (x̄; z) have finite covariance Σ = Cov(PTM(x̄)∇ f (x̄; z)).

With these assumptions in hand, we have the following asymptotic normality result

for nonlinear programming—a direct corollary of Theorem 5.6.1.

Corollary 5.6.2 (Asymptotic normality in nonlinear programming). Suppose that LICQ,

strict complementary, second-order sufficient conditions, and Assumption (R) hold. Sup-

pose that γ ∈ (1
2 , 1) and consider the iterates xk generated by the stochastic projected

gradient method (5.6.2). Then if xk converges to x̄ with probability 1, the average iterate

x̄k =
1
k

∑k
i=1 xi admits the expansion

√
k(x̄k − x̄) = −

1
√

k

k∑
i=1

U(U⊤∇2
xxL(x̄, ȳ)U)−1U⊤ν(1)

i + oP(1),

where the columns of U form an orthonormal basis of TM(x̄). Consequently, asymptotic

normality holds:

√
k(x̄k − x̄)

d
−→ N (0,∇σ(0) · Cov(∇ f (x̄; z)) · ∇σ(0)⊤) ,

where ∇σ(0) = (PTM(x̄)∇
2
xxL(x̄, ȳ)PTM(x̄))†.

As stated in the introduction, this appears to be the first asymptotic normality guaran-

tee for the standard stochastic projected gradient method in general nonlinear program-

ming problems with C3 data, even in the convex setting. Finally we note that even for

126



simple optimization problems, dual averaging procedures can achieve suboptimal con-

vergence [16]. This is surprising since such methods identify the active manifold [94]

(also see [16, Section 4.1]), while projected stochastic gradient methods do not.

Example 5.6.1. It is instructive to look at three problem formulations for sparse recov-

ery:

min
x
E[ f (x, z)] + λ∥x∥1, (regularized)

min
∥x∥1≤A

E[ f (x, z)], (l1 constraint)

min
|supp(x)|≤s

E[ f (x, z)]. (l0 constraint)

Problem (regularized) is typically solved by the stochastic proximal algorithm, while

(l1 constraint) and (l0 constraint) are solved by the stochastic projected gradient method.

Both methods are trivially examples of the algorithm (5.5.4) that we have studied in the

section. Let us now look at the asymptotic covariance of these methods corresponding to

the three problems. To this end, let x⋆ denote the optimal solution for the three problems

and suppose that ∥x⋆∥1 = A and |supp(x⋆)| = s. Without loss of generality suppose

moreover supp(x⋆) = {1, . . . , s}. In all cases, under the regularity conditions discussed

in the section, the asymptotic covariance of the average iterate is

∇σ(0) · Cov(∇ f (x⋆, z)) · ∇σ(0)⊤.

Thus the only distinction is in Jacobian of the solution map ∇σ(0). It is straightfor-

ward to see that the active manifold (under strict complementarity) for (regularized)

and (l0 constraint) is

M1,3 = R
s × {0}d−s,

while the active manifold for (l1 constraint) is

M2 =M1,3 ∩

x :
s∑

i=1

|xi| = A

 .
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Because the active manifoldM in all cases is piecewise linear, an application of Theo-

rem 5.3.2 yields the expression:

∇σ(0) = (PTM(x⋆)E[∇2 f (x⋆, z)]PTM(x⋆))†.

For the problem (regularized) and (l0 constraint), the tangent space is simply TM1,3(x⋆) =

Rs × {0}d−s, while for (l1 constraint), the tangent space is smaller

TM2(x⋆) =

v ∈ TM1,3(x⋆) :
s∑

i=1

sign(x⋆i )vi = 0

 .
In particular, the asymptotic covariance corresponding to (l1 constraint) is no larger

in the Loewner order than that of (regularized) and (l0 constraint). Consequently, the

formulation (l1 constraint) may be preferable when A = ∥x⋆∥1 is known.

5.7 Asymptotic optimality of SAA and SFB

In this section, we show that the asymptotic covariance in (5.4.4) is the best possible

among all estimators of x̄, and therefore both SAA and SFB are asymptotically optimal.

Namely, we will lower-bound the performance of any estimation procedure for find-

ing a solution of an adversarially-chosen sequence of small perturbations of the target

problem. In order to specify this sequence, define the set

G := {g : Z → Rd : E
z∼P

[g(z)] = 0, E
z∼P
∥g(z)∥2 < ∞}.

Fix now a function g ∈ G and an arbitrary C3-smooth function h : R→ [−1, 1] such that

its first three derivatives are bounded and h(t) = t for all t ∈ [−1/2, 1/2]. Now for each

u ∈ Rd, define a new probability distributionDu whose density is given by

dPu(z) :=
1 + h(u⊤g(z))

C(u)
dP(z), (5.7.1)
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where C(u) is the normalizing constant C(u) := 1+
∫

h(u⊤g(z)) dP(z). Thus each vector

u ∈ Rd induces the perturbed problem

0 ∈ L(x, u) + H(x) where L(x, u) = E
z∼Pu

A(x, z). (5.7.2)

Reassuringly, the following lemma shows that map (x, u) 7→ L(x, u) is C1 near (x̄, 0).

All proofs of results in this section appear in Section 7.2 of the supplement.

Lemma 5.7.1. The map (x, u) 7→ L(x, u) is C1 near (x̄, 0) with partial derivatives

∇xL(x̄, 0) = ∇A(x̄) and ∇uL(x, 0) = E
z∼P

A(x̄, z)g(z)⊤.

The family of problems (5.7.2) would not be particularly useful if their solution

would vary wildly in u. On the contrary, the following lemma shows that for all small

u, each problem (5.7.2) admits a unique solution in U, which moreover varies smoothly

in u. We will use the following standard notation. A map σ(·) is called a localization

of a set-valued map F(·) around a pair (ū, v̄) ∈ gph F if the two sets, gphσ and gph F,

coincide locally around (ū, v̄).

Lemma 5.7.2 (Derivative of the solution map). The solution map

S (u) = {x : 0 ∈ L(x, u) + H(x)}.

admits a single-valued localization s(·) around around (0, x̄) that is differentiable at 0

with Jacobian

∇s(0) = −∇σ(0) · E
z∼P

[A(x̄, z)g(z)⊤].
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In light of Lemma 5.7.2, for all small u, we define the solution x̄u := s(u). The

following theorem provides an asymptotic lower bound on the performance of any es-

timator when applied to the problems within our parametric family. We let EPk
u

denote

the expectation with respect to k i.i.d. observations zi ∼ Pu.

Theorem 5.7.3 (Local minimax). Let L : Rd → [0,∞) be symmetric, quasiconvex, and

lower semicontinuous, let x̂k : Z k → U be a sequence of estimators, and set g(z) :=

A(x̄, z) − A(x̄). Then the inequality

sup
I⊂Rd , |I|<∞

lim inf
k→∞

max
u∈I
EPk

u/
√

k
[L(
√

k(x̂k − x̄u/
√

k))] ≥ E[L(Z)] (5.7.3)

holds, where Z ∼ N(0,∇σ(0) · Cov(A(x̄, z)) · ∇σ(0)⊤).

In particular, applying Theorem 5.7.3 with quadratics L yields a lower bound

on the achievable covariance among any estimator. We will now show that both

SAA and SFB fulfill (5.7.3) with equality, and therefore in a precise sense asymptot-

ically minimax optimal. Note that we already know that the asymptotic covariance

σ(0) · Cov(A(x̄, z)) · ∇σ(0)⊤ is achieved by both SAA (Theorem 5.4.1) and SFB (Theo-

rem 5.6.1) when applied to the fixed problem u = 0. It remains therefore to argue that
√

k(x̂k − x̄u) along the perturbed sequence of problems is asymptotically independent of

u. This is the content of the following theorem.

Theorem 5.7.4 (Tightness of SAA). Under the same assumptions as Theorem 5.4.1, the

sample average approximation estimator x̂k := xk satisfies (5.7.3) with equality for any

bounded continuous function L : Rd → [0,∞).

SFB enjoys completely analogous results, which we summarize next.

Theorem 5.7.5 (Tightness of SFB). Suppose the same setting as Theorem 5.6.1 and

that ν(1)
i = A(x̄, zi) − A(x̄) with zi

iid
∼ P and such that E∥ν(1)

i ∥
2 < ∞. Then the average
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iterate x̂k =
1
k

∑k
i=1 xi satisfies (5.7.3) with equality for any bounded continuous function

L : Rd → [0,∞).

Theorem 5.7.6 (Tightness of SFB for nonlinear programming). Under the same as-

sumptions as Corollary 5.6.2, the average iterate x̂k := 1
k

∑k
i=1 xi satisfies (5.7.3) with

equality for any bounded continuous function L : Rd → [0,∞).

We note that asymptotic optimality of SFB for smooth problems was proved in [91,

Theorem 5.6], and the proof we present of the three theorems above is an adaptation of

the argument therein.

131



CHAPTER 6

A LOCAL NEARLY LINEARLY CONVERGENT FIRST-ORDER METHOD

6.1 Introduction

Slow sublinear convergence of first-order methods in nonsmooth optimization is often

illustrated with the following simple strongly convex function:

f (x) = max
1≤i≤m

xi +
1
2
∥x∥2 for some m ≤ d and all x ∈ Rd. (6.1.1)

For example, consider the subgradient method applied to f , which generates iterates

xk. Since f is strongly convex, classical results dictate that f (xk) − inf f = O(k−1). On

the other hand, under proper initialization and an adversarial first-order oracle, there

is a matching lower bound for the first m iterations: f (xk) − inf f ≥ (2m)−1 for all

k ≤ m; see [95,96]. Beyond the subgradient method, the lower bound also holds for any

algorithm whose kth iterate lies within the linear span of the initial iterate and past k − 1

computed subgradients. Thus, one must make more than m first-order oracle calls to f ,

i.e., function and subgradient evaluations, before possibly seeing improved convergence

behavior.

While such methods make little progress when k ≤ m, this behavior may or may not

continue for k ≫ m. On one extreme, the subgradient method continues to converge

slowly even when equipped with the popular Polyak stepsize (PolyakSGM) [97]; see

dashed lines in Figure 6.1. On the opposite extreme, more sophisticated algorithms

such as the center of gravity method or the ellipsoid method converge linearly, but their

complexity scales with the dimension of the problem, a necessary consequence of the

linear rate of convergence; see the discussion in [96, Chapter 2].
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Figure 6.1: Comparison of NTDescent with PolyakSGM on (6.1.1). Left: we fix d and
vary m; Right: we fix m and vary d. For both algorithms, the value f (x∗t ) denotes the
best function value seen after t oracle evaluations.

A natural question is whether a first-order method exists whose behavior lies be-

tween these two extremes, at least for nonsmooth functions f satisfying regularity condi-

tions at local minimizers. Regularity conditions often take the form of growth – linear or

quadratic – away from minimizers. Well-known results show that subgradient methods

converge linearly on nonsmooth functions with linear (also called sharp) growth [97].

On the other hand, in smooth convex optimization, quadratic growth entails linear con-

vergence of gradient methods. However, to our knowledge, no parallel result exists for

nonsmooth functions with quadratic growth. Thus, in this chapter, we ask

is there a locally nearly linearly convergent method for nonsmooth functions

with quadratic growth whose rate of convergence and region of rapid local

convergence solely depends on f ?

Let us explain the qualifiers “nearly” and “solely depends on f .” First, the qualifier

“nearly” signifies that the method locally achieves a function gap of size ε using at
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most, say, O(C f log3(1/ε)) first-order oracle evaluations of f , where C f depends on f .

Second, the qualifier “solely depends on the function” signifies that C f and the size of

the region of local convergence do not depend on the dimension of the problem but

instead depend only on the function f through intrinsic quantities, such as Lipschitz and

quadratic growth constants.

In this chapter, we positively answer the above question for a class of nonsmooth

optimization problems with quadratic growth. The method we develop is called Normal

Tangent Descent (NTDescent). We formally describe NTDescent in Section 6.1.7. For

now, we illustrate the performance of NTDescent on f from (6.1.1) in Figure 6.1. In

both plots, we see NTDescent improves on the performance of PolyakSGM, measured

in terms of oracle calls, which is a fair basis for comparison since both PolyakSGM

and NTDescent perform a similar amount of computation per oracle call. Figure 6.1b

also shows that the performance of NTDescent is dimension independent. We highlight

that NTDescent achieved this performance without any parameter tuning. Indeed, our

central theoretical guarantees for NTDescent (Theorem 6.1.1) do not require the user to

set any parameters.

The problem class on which NTDescent succeeds consists of locally Lipschitz non-

smooth functions with quadratic growth and a certain smooth substructure at local min-

imizers. Importantly, we do not assume the problems under consideration are convex,

though convexity entails improved guarantees. Two example classes with such smooth

substructure include (i) “generic” semialgebraic functions and (ii) properly Cp decom-

posable loss functions satisfying strict complementarity and quadratic growth condi-

tions [5]. A semialgebraic function is one whose graph is the finite union of intersec-

tions of polynomial inequalities. Semialgebraic functions (more generally tame [98]

functions) model most problems of interest in applications. When f is semialgebraic,
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we will show that for a full Lebesgue measure set of w ∈ Rd, the tilted function

fw : x 7→ f (x) + w⊤x has quadratic growth and the desired smooth substructure at each

local minimizer, explaining the qualifier “generic.” This fact follows from combining

results of [7, 25]. On the other hand, a properly Cp decomposable function is one that

decomposes near local minimizers as a composition of a positively homogeneous con-

vex function with a smooth mapping that maps the minimizer to the origin. Decompos-

able functions appear often in practice, e.g., in eigenvalue and data fitting problems. An

important subclass of decomposable functions consists of so-called “max-of-smooth”

functions, which are the maximum of finitely many smooth functions that satisfy cer-

tain regularity conditions at minimizers, e.g., f in (6.1.1).

The precise smooth substructure used in this chapter was recently identified in [25],

where it was shown to be available in decomposable and generic semialgebraic prob-

lems. Since it is available in many problems of interest, throughout this introduction,

we call this combination of quadratic growth and smooth substructure typical structure

and call functions possessing this combined structure typical. We present the formal

structure in Section 6.3. At the heart of this structure is a distinguished smooth manifold

M – called the active manifold – containing a local minimizer of interest. We formally

define the active manifold concept in Definition 2.4.1, but at a high level, the two crucial

characteristics are that (i) along the manifold, the function f is smooth and (ii) normal

to the manifold, the function grows sharply. For example, Figure 6.2 depicts the nons-

mooth function f (u, v) = u2 + |v| for which the u-axis plays the role ofM. Section 6.1.5

will examine this function and explain how we use its typical structure in NTDescent.

This example also has the smooth substructure developed in several seminal works in

the optimization literature, including those found in work on identifiable surfaces [1],

partly smooth functions [2], VU-structures [3, 99], and minimal identifiable sets [6].

However, crucial to the analysis of NTDescent are two further properties introduced
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in [25], called strong (a)-regularity and (b≤)-regularity. Strong (a)-regularity roughly

states that the function is smooth in tangent directions to the manifold up to an error

term, which is linear in the distance to the manifold. On the other hand, (b≤)-regularity

is a one-sided uniform semismoothness [100] property that holds automatically when f

is (weakly) convex. Both properties hold for the function in Figure 6.2 and for the func-

tion in (6.1.1), where the active manifold is the subspace in which the first m variables

take on the same value:M = {x ∈ Rd : x1 = x2 = . . . xm}.

Figure 6.2: The function f (u, v) = u2 + |v| has typical structure.

Before turning to the description of NTDescent, we point out that similar smooth

substructure has been used in the analysis first-order methods in nonsmooth optimiza-

tion, most famously for functions withVU-structure [3,99] and more recently for max-

of-smooth functions.1 ForVU functions, so-called “bundle-methods,” [101,102] which

possess an inner-outer loop structure, have been shown to converge superlinearly with

respect to the number of outer-loop steps [99]; see also the survey [103]. These meth-

ods have excellent empirical performance, but a complete account of their inner-loop

complexity remains elusive. On the other hand, in a recent work, Han and Lewis pro-

posed a first-order method – Survey Descent – that converges linearly on certain strongly

convex max-of-smooth objectives, stepping beyond the classical smooth setting [104].

The method shows favorable performance beyond the max-of-smooth class, e.g., on cer-
1Though they also benefit from smooth substructure, proximal-methods do not fall within the oracle

model of first-order methods considered in this chapter. Thus, we omit them from our discussion.
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tain eigenvalue optimization problems, but no theoretical justification for this success is

available. We discuss Survey Descent in more detail in Section 6.7.1. We now motivate

NTDescent.

6.1.1 Motivation: Goldstein’s conceptual subgradient method

To motivate NTDescent and the role of smooth substructure, let us set the stage: con-

sider the nonsmooth optimization problem:

minimizex∈Rd f (x),

where f : Rd → R is a locally Lipschitz function, which is not necessarily convex. The

algorithm developed in this chapter assumes first-order oracle access to f [95, 96, 105].

In particular, at every x ∈ Rd, we must be able to evaluate f (x) and retrieve an element

of the Clarke subdifferential ∂ f (x). Informally, the Clarke subdifferential is comprised

of convex combinations of limits of gradients taken at nearby points; a formal definition

appears in Section 5.2. The Clarke subdifferential reduces to the familiar objects in

classical settings. For example, when f is C1, the Clarke subdifferential reduces to

the singleton mapping {∇ f }. In addition, when f is convex, the Clarke subdifferential

reduces to the subdifferential in the sense of convex analysis.

The starting point of this chapter is the classical conceptual subgradient method of

Goldstein [106]. The core object in this method is the Goldstein subdifferential:

∂σ f (x) := conv

 ⋃
y∈Bσ(x)

∂c f (y)

 for all x ∈ Rd and σ > 0. (6.1.2)

This subdifferential is the convex hull of all Clarke subgradients of f taken at points

inside the ball of radius σ. Its importance arises from the following descent property
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proved in [106]: fix σ > 0 and x ∈ Rd and let w denote the minimal norm element of

∂σ f (x). Then

f
(
x − σ

w
∥w∥

)
≤ f (x) − σ∥w∥ if w , 0. (6.1.3)

This property motivates Goldstein’s conceptual subgradient method, which iterates:

xk+1 = xk − σ
wk

∥wk∥
where wk = argmin

w∈∂σ f (xk)
∥w∥. (6.1.4)

This algorithm is remarkable since it is a descent method for any Lipschitz function and

even converges at a sublinear rate. Indeed, a quick appeal to (6.1.3) yields

min
k=0,...,K−1

∥wk∥ ≤ ε holds when K ≥
f (x0) −min f

σε
.

While this exact variant of the Goldstein method is not necessarily implementable, re-

cent work has devised approximate versions with similar sublinear convergence proper-

ties [107, 108].

The algorithm introduced in this chapter approximately implements the

method (6.1.4). This chapter aims to prove that the method is locally nearly linearly con-

vergent on typical nonsmooth functions. We must resolve two issues for this problem

class to develop such a method. First, we must develop rapidly convergent algorithms

that approximately compute the minimal norm element of the Goldstein subdifferential.

Second, we must devise an appropriate regularity property that ensures the proposed

method converges nearly linearly. We will discuss both of these properties in turn, be-

ginning with a regularity property that relates the decrement in (6.1.3) to the function

gap.

6.1.2 Linear convergence via a gradient inequality
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Observe that if the bound

σ∥wk∥ ≥ η( f (xk) −min f )

holds for some η > 0 and all k > 0, then the Goldstein method (6.1.4) converges linearly

to a minimizer of f . A potential issue with this inequality is that the vector wk is zero

whenever σ is larger than the distance of xk to the nearest critical point of f ; thus, the

algorithm may stall whenever xk is near enough to a minimizer. Thus, we propose a

relaxation of the property that allows σ to depend on xk.

Indeed, we will provide conditions under which the following bound holds near a

local minimizer x̄ of f : there exists a constant η > 0 and a function σ : Rd → R+ such

that for all x near x̄, we have

σ(x)dist(0, ∂σ(x) f (x)) ≥ η( f (x) − f (x̄)). (6.1.5)

throughout, we will refer to this bound as a gradient inequality, due to its similarity to

the Kurdyka-Łojasiewicz (KL) gradient inequality [46]. The KL inequality requires that

a suitable nonlinear reparameterization ψ : R→ R of the function gap is bounded by the

minimal norm Clarke subgradient for all x near x̄:

dist(0, ∂c f (x)) ≥ ψ( f (x) − f (x̄)).

In recent years, the KL inequality has played a key role in establishing convergence and

rates of convergence for proximal methods in nonsmooth optimization and in continuous

time analogs of the subgradient method; see, e.g., [46, 109–112].

To illustrate, let us specialize to the semialgebraic setting, where the desingulariza-

tion function ψ is known to take the form ψ(r) = rθ for θ ∈ [0, 1). The work [113, The-

orem 2] initiated the study of convergence of proximal methods in this setting, showing

that the proximal point method asymptotically converges to its limit point, which is crit-

ical but not necessarily optimal. The method convergence in finitely many steps when
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θ = 0, locally converges linearly when θ ∈ (0, 1/2], and locally converges at the rate

k
−(1−θ)
2θ−1 when θ ∈ (1/2, 1). Further works such as [109, 111] generalized the techniques to

related proximal methods. Passing to continuous time, one is interested in the conver-

gence of the trajectory of subdifferential inclusion satisfying ẋ(t) ∈ −∂c f (x(t)) at almost

every t. Here, the rates of convergence exactly parallel those in the proximal methods as

shown in [114, Theorem 4.7].2 In contrast to the proximal and continuous-time settings,

we do not know whether the KL inequality alone allows one to design a locally linearly

convergent discrete-time subgradient method, except in the setting where θ = 0 (i.e., f

is sharp) and f is convex [97] or weakly convex [116]; weakly convex functions form a

broad class of nonconvex functions that includes all compositions of Lipschitz convex

functions with smooth mappings. When θ > 0, to the best of our knowledge, the best

rate proved in the literature for any subgradient type method is k
−(1−θ)

2θ [117]; this result is

only known to hold for convex functions.3

A well-known property of the KL inequality is its prevalence: it holds at each critical

point of an arbitrary lower-semicontinuous semialgebraic function f [46]. We will show

that the gradient inequality (6.1.5) is also prevalent in the sense that it holds for the

problems above with typical structure. In this way, the conceptual method (6.1.4) with

varying σk := σ(xk) will locally converge linearly on such problems. The reader may

wonder whether we can or must find the precise value σ(xk). We will show that for

typical problems, an appropriate σk may be found through a line search procedure.

2These rates were shown only for “lower-C2” semialgebraic losses, but extend to locally Lipschitz
semialgebraic functions via the semialgebraic “chain rule” proved in [115].

3The results stated in [117] pertain to functions with Hölder growth; thus, to prove the results stated
in the paragraph, we must use the following known fact: functions satisfying the KL inequality with
exponent θ have Hölder growth with exponent 1/(1 − θ), which follows from the proof of [118, Theorem
3.7].
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6.1.3 Approximately implementing Goldstein’s method

The gradient inequality ensures that the conceptual Goldstein method converges linearly,

provided the stepsize σ is chosen adaptively. To move beyond the conceptual setting,

we must develop strategies for approximating the minimal norm element of ∂σ f (x) for

σ > 0 and x ∈ Rd. Suppose we have such a method and denote it by MinNorm(x, σ).

Then, the method of this chapter iterates:

xk+1 = xk − σk
wk

∥wk∥
and wk = MinNorm(xk, σk) (6.1.6)

for an appropriate sequence σk > 0. We will discuss and develop two different imple-

mentations of MinNorm(x, σ) in this chapter. Given x ∈ Rd and σ > 0, both methods

iteratively construct a sequence of Clarke subgradients g0, . . . , gT−1 taken at points in the

ball Bσ(x) and then output a “small” convex combination w ∈ conv{g0, . . . , gT−1}, which

satisfies the descent condition

f
(
x − σ

w
∥w∥

)
≤ f (x) −

σ

8
∥w∥. (6.1.7)

The oracle complexity of MinNorm(x, σ) is then T function/subgradient evaluations, and

we hope to ensure that T is relatively small, for example, a constant or at most

T = O
(
log

(
∆−1

x,σ
))

where ∆x,σ := dist(0, ∂σ f (x)).

Provided that T is on this order, that f satisfies the gradient inequality (6.1.5), and that

σk is chosen appropriately, the iterate xk will satisfy f (xk) − f (x̄) ≤ ε after at most

O(log2(1/ε)) iterations, a nearly linear rate of convergence. This complexity ignores the

cost of choosing an appropriate stepsize σk, but we will show that in typical problems,

we can find appropriate σk with at most O(log(1/ε)) function/subgradient evaluations.

We know of two MinNorm type methods in the literature, but their complexity

is either too large or useful only in low dimensions problems. For example, the
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works [107,108] introduced such a method for general locally Lipschitz functions. How-

ever, the complexity of the method is T = O(1/∆x,σ) – too large for our purposes. On

the other hand, the work [108] also introduced a method tailored to low-dimensional

weakly convex functions. However, the method is based on cutting plane techniques, so

its complexity scales linearly with dimension: T = O(d log(1/∆x,σ)).

While existing MinNorm methods are slow for general Lipschitz functions, we show

that the aforementioned typical structure allows us to develop MinNorm methods that

accelerate in a neighborhood of the minimizer. Our approach is based on a decom-

position of a neighborhood of the minimizer into two regions: one where the method

of [107, 108] is applicable, and another region where a novel MinNorm method may be

applied.

6.1.4 The normal and tangent regions

In this chapter, we use the active manifoldM to split the space of (x, σ) for x nearby

the minimizer x̄ ∈ M into two sets where fast MinNorm methods are available. We call

the first set the normal region. This region consists of points whose normal distance

dist(x,M) is larger than a multiple of the squared tangential distance ∥PM(x) − x̄∥2,

together with stepsizes σ proportional to a multiple of the normal distance:
a1
2 dist(x,M) ≤ σ ≤ a1dist(x,M);

a2
2∥PM(x) − x̄∥2 ≤ dist(x,M),

for problem dependent constants a1, a2 ∈ (0, 1); see Theorem 6.4.3 for more details. We

will show that in this region, we have ∆x,σ = Ω(1), so the MinNormmethod of [107,108]

terminates with descent in finitely many steps.

On the other hand, we call the second set the tangent region. This set consists of
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points whose squared tangential distance is larger than a multiple of the normal distance,

together with stepsizes σ proportional to a multiple of the tangential distance:
a2
2 ∥PM(x) − x̄∥ ≤ σ ≤ a2∥PM(x) − x̄∥;

dist(x,M)
σ
≤ 2a2∥PM(x) − x̄∥,

where a1 and a2 are as in the normal region. We will propose a new MinNorm method

for this region, which terminates rapidly. We note that we provide a range of valid σ

rather than a single value in both cases since we aim to estimate σ with a line search.

6.1.5 A simple example

Before rigorously describing the MinNorm methods in detail, let us provide intuition on

the regions and the principles of the methods through the following simple function of

two variables f (x) = u2 + |v|, where x := (u, v) ∈ R2. This function has a unique mini-

mizer at x̄ = (0, 0). Here, the u-axis is the active manifoldM. Along the manifold, f is

smooth and grows quadratically, while off the manifold, f grows sharply; see Figure 6.2

for a plot of the function. Figure 6.3 plots the set of x such that there exists σ > 0

with (x, σ) in the normal and tangent regions for f , respectively (with a2 = 1/8). The

manifold M induces a decomposition of f into smooth fU(u, v) = u2 and nonsmooth

fV(u, v) = |v| components. In particular, denoting that x = (u, v), we have

f (x) = fU(x) + fV(x) = ∥PM(x) − x̄∥2 + dist(x,M). (6.1.8)

This decomposition shows that fV is dominant in the normal region, while fU is

dominant in the tangent region. Likewise, as we will argue momentarily, the minimal

norm Goldstein subgradient wσ ∈ ∂σ f (x) satisfies ∥wσ∥ ≥ ∥∇ fV(x)∥ in the normal re-

gion, while ∥wσ∥ = Ω(∥∇ fU(x)∥) in the tangent region. Several consequences follow
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from this observation. First, in the normal region, the MinNorm method of [107, 108]

will terminate in finitely many steps due to the lower bound ∥wσ∥ ≥ 1. On the other

hand, in the tangent region, ∥wσ∥ can be much smaller, so we must introduce a new

method to generate descent. Finally, assuming these approximations are accurate, the

gradient inequality (6.1.6) quickly follows: in the normal region, we have

σ∥wσ∥ = Ω(dist(x,M)) = Ω( f (x)),

while in the tangent region, we have

σ∥wσ∥ = Ω(∥PM(x) − x̄∥∥∇ fU(x)∥) = Ω(∥PM(x) − x̄∥2) = Ω( f (x)).

Though it follows from immediate calculations in this example, in the more general

setting, the following consequence of quadratic growth will be crucial in establishing a

similar bound: ∥∇ fU(x)∥ = Θ(∥PM(x) − x̄∥).
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Figure 6.3: Contour plots for f (u, v) = u2 + |v| together withM, shown in black. The
light green regions consist of x := (u, v) ∈ R2 such that there exists σ > 0 with (x, σ) in
the tangent (left) and normal (right) regions.

Now, to lower bound ∥wσ∥ we use the following fact: ∇ fU(u, v) is tangent to M,

while ∇ fV(u, v) is normal toM when v , 0. Thus, to lower bound ∥wσ∥ in the normal

144



region, we will lower bound the size of the normal component of wσ. Indeed, since

σ < dist(x,M), all points x′ ∈ Bσ(x) are on the same side ofM. Therefore, the normal

component of wσ is an average of identical gradients ∇ fV(x′) = ∇ fV(x). Likewise,

in the tangent region, we lower bound the tangent component of wσ. Indeed, since

σ < ∥x̄ − PM(x)∥/8, the projection onto M of all points x′ ∈ Bσ(x) are on the same

side of the origin. Thus, the tangent component of wσ is an average of nearly identical

gradients ∇ fU(x′) ≈ ∇ fU(x), yielding the lower bound. We prove a more general form

of these lower bounds in Lemma 6.4.1 and Lemma 6.4.2, which follow from a similar

argument.

Turning to algorithms, we have noted that the MinNormmethod of [107,108] may be

used in the normal region. In the tangent region, we are unsure how to design a method

that can quickly recover wσ. Instead of searching for wσ directly, we take a slightly

different perspective in the tangent region: we seek a vector g ∈ ∂σ f (x) with “small”

normal component, meaning:

∥PN(g)∥ = O(∥∇ fU(x)∥2)

where N is the normal space to M, i.e., M⊥. Intuitively, when g has a small normal

component, the nonsmooth part fV minimally changes along a gradient step. On the

other hand, if g is sufficiently aligned with ∇ fU, the smooth part fU decreases at an

appropriate rate; we prove this in a more general setting in Lemma 6.5.2.

Why might one expect such a g to be available in the tangent region? The reason is

that the gradient of the smooth component is itself a Goldstein subgradient. Indeed, for

points near the origin and in the tangent region, the tangential distance is much larger

than the normal distance. Thus, the reflection of any point (u, v) across the manifoldM

is contained in Bσ(x), which immediately implies gradient of the smooth component is
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an element of Goldstein subdifferential:

∇ fU(u, v) =
1
2
∇ f (u, v) +

1
2
∇ f (u,−v) ∈ ∂σ f (x). (6.1.9)

While the inclusion (6.1.9) illustrates one way to construct such a g, we cannot hope for

perfect symmetry in general problems.

Instead, a central insight of this chapter is that a similar approximate reflection exists

in problems with typical structure. To illustrate, consider Figure 6.4. This figure depicts

a point x in the tangent region together with the result of a normalized gradient step:

x+ := x − σ
∇ f (x)
∥∇ f (x)∥

.

As can be seen from the figure, x+ is an approximate reflection of x across the u-axis,

which “flips the sign” of the nonsmooth component of ∇ f : ∇ fV(x) = −∇ fV(x+). Thus,

in this setting, one may “cancel out” the nonsmooth component by a simple averaging:

∇ fU(x) ≈
1
2
∇ f (x) +

1
2
∇ f (x+).

While seemingly crude, we will show this strategy generalizes to typical functions. An

important distinction with the general setting is that a single averaging step alone will

no longer suffice. Nevertheless, we show that by iterating this process, we can geo-

metrically shrink the normal component of the Goldstein gradient, eventually yielding

descent.
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Figure 6.4: Contour plots for f (u, v) = u2 + |v|. Left: The point x = (1, .1) together
with the approximate reflection x+ = x − .3 ∇ f (x)

∥∇ f (x)∥ across the u axis. The solid light
green arrow is parallel to the negative gradient direction −∇ f (x). The dashed arrows
denote the orthogonal decomposition of −∇ f (x), respectively −∇ f (x+), into the vectors
−∇ fU(x) and −∇ fV(x), respectively −∇ fU(x+) and −∇ fV(x+). From the plot, we see
∇ fV(x) = −∇ fV(x+). Right: The point x with estimate −1

2 (∇ f (x)+∇ f (x+)) of the vector
−∇ fU(x).

6.1.6 Two MinNorm methods: NDescent and TDescent

To generalize the strategy outlined in the previous section, we will prove that the min-

imal norm Goldstein subgradients of typical problems similarly split into tangent and

normal components just as in Section 6.1.5. Then, we introduce two MinNorm type

methods for “normal” and “tangent” steps.

For (x, σ) in the normal region, we use a small modification of the MinNorm type

method of [108]. We call this method Normal Descent (NDescent) and describe it

in Algorithm 1. As in the simple example above, we will show that NDescent must

terminate with an approximately minimal norm Goldstein subgradient in finitely many

steps, provided σ lies within an appropriate range. We will show that this subgradient is

a descent direction satisfying (6.1.7).
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Algorithm 1 NDescent(x, g, σ,T )
1: Set g0 = g and t = 0.
2: while T − 1 ≥ t, ∥gt∥ > 0, and σ

8 ∥gt∥ ≥ f (x) − f
(
x − σ gt

∥gt∥

)
do

3: Choose any r satisfying 0 < r < σ∥gt∥.
4: Sample ζt uniformly from Br(gt).
5: Choose yt uniformly at random in the segment

[
x, x − σ ζt

∥ζt∥

]
.

6: Choose ĝt ∈ ∂c f (yt).
7: gt+1 = argminz∈[gt ,ĝt] ∥z∥2.
8: t = t + 1.
9: end while

10: return gt.

We illustrate the principle behind NDescent as follows. Suppose we are given a

vector g ∈ ∂σ f (x) not satisfying the descent condition, i.e., with u := g
∥g∥ , we have

f (x − σu) − f (x) ≥ −
∥g∥
8
.

Then by Lebourg mean value theorem [31, Theorem 2.4] (provided that f is differen-

tiable along the line segment between [x, x′], which can be ensured by adding a small

perturbation to g; we ignore this in our discussion), we may assume that

f (x − σu) − f (x) = σ
∫ 1

0
− ⟨∇ f (x − σtu) , u⟩ dt = −σ ⟨v, u⟩ ,

where v :=
∫ 1

0
∇ f (x − tu) dt ∈ ∂σ f (x). Consequently, ⟨v, g⟩ ≤ ∥g∥2/8. While it is not

possible to compute v, we can compute a random element of the Goldstein subdifferen-

tial, satisfying the same inequality in expectation. Indeed, defining v′ = ∇ f (y) where y

is uniformly sampled from the line segment [x, x − σu] (with end points x and x − σu),

we have ⟨Ey[v′], g⟩ ≤ ∥g∥2/8. Based on this bound, a quick calculation shows that the

minimal norm element g+ of the line segment [g, v′] satisfies the bound

Ey∥g+∥2 ≤ ∥g∥2 −
∥g∥4

16L2 ,

where L is the Lipschitz constant of function f on the ball B2σ(x). Moreover g+ ∈

∂σ f (x). Thus, repeating this process yields a decreasing sequence of Goldstein subgra-

dients, which tend to zero as long as the descent condition is not met. In general, the
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norms of the subgradients generated by this process decay at a rate of 1/k. However,

we will prove that dist(0, ∂σ f (x)) is bounded below by a fixed constant when (x, σ) is in

the normal region described in Section 6.1.4. Consequently, the loop must exist in finite

time with descent (with high probability), for otherwise, we will have found a subgradi-

ent norm strictly smaller than dist(0, ∂σ f (x)); see Proposition 6.5.1. Readers interested

in the formal calculations may consult [107, 108].

On the other hand, for (x, σ) in the tangent region, we develop a new MinNorm

type method, which likewise relies on an approximate reflection property. We call this

method Tangent Descent (TDescent) and present it in Algorithm 2. Given an input

point x, stepsize σ > 0, and initial subgradient g0 ∈ ∂c f (x), TDescent repeats the

following steps

Choose: ĝk ∈ ∂c f
(
x − σ

gk

∥gk∥

)
;

Update: gk+1 = argmin
g∈[gk ,ĝk]

∥g∥,

until it achieves descent f (x − σ gk
∥gk∥

) ≤ f (x) − σ
8 ∥gk∥ or runs over budget.

Algorithm 2 TDescent(x, g, σ,T )
1: Set g0 = g and t = 0.
2: while T − 1 ≥ t, ∥gt∥ > 0, and σ

8 ∥gt∥2 ≥ f (x) − f
(
x − σ gt

∥gt∥

)
do

3: Choose ĝt ∈ ∂c f (x − σ gt
∥gt∥

).
4: gt+1 = argminz∈[gt ,ĝt] ∥z∥ .
5: t = t + 1.
6: end while
7: return gt.

The motivation for this method is that for typical problems, the step x − σ gk
∥gk∥

is

locally an approximate reflection across M that “flips” the normal component of the

Goldstein subgradient. Indeed, let y := PM(x) denote the projection of x ontoM and let

N := NM(y) denote the normal space toM at y; see Section 5.2 for a precise definition
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of these concepts. Then we will prove that for all k, we have

⟨PNgk, ĝk⟩ ≤ −C∥PNgk∥ + O(∥y − x̄∥2),

for some C > 0, provided σ lies within an appropriate range. This inequality ensures

that each step of the TDescent geometrically decreases the “normal component” of

gk, until we arrive at a Goldstein subgradient with normal component on the order of

O(∥y − x̄∥2); see Section 6.5.2. Moreover, given g ∈ ∂σ f (x) satisfying

∥PN(g)∥ ≤ C3∥y − x̄∥2

for a particular problem dependent constant C3 > 0, we will prove the descent condition

f
(
x − σ

g
∥g∥

)
≤ f (x) −

σ∥g∥
8

holds; see Lemma 6.5.2. Combining these two facts shows that TDescent will rapidly

terminate with descent.

6.1.7 The NTDescent algorithm

We call the main algorithm of this chapter Normal Tangent Descent (NTDescent) and

present it in Algorithm 4. At a high level, the method is an approximate implementa-

tion of Goldstein’s conceptual subgradient method as in (6.1.6), using NDescent and

TDescent as MinNorm type methods. As input it takes three parameters: an initial point

x; a sequence of grid-sizes {Gk} for the line search on σ; and a sequence of budgets {Tk}

for the MinNorm type methods NDescent and TDescent. Later, we will show that the

user may set Tk = Gk = k + 1 for all k ≥ 0.
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Algorithm 3 linesearch(x, g, s,G,T )
1: Set v0 = g.
2: for i = 0, . . . ,G − 1 do
3: σi = 2−(G−i).
4: ui = TDescent(x, vi, σi,T ).
5: vi+1 = NDescent(x, ui, σi,T ).
6: end for
7: x̃ := argmin{ f (x′) : x′ ∈ {x} ∪ {x − σi

vi+1
∥vi+1∥

: σi ≤
∥vi+1∥

s , i = 0, . . . ,G − 1}}.
8: return x̃.

Algorithm 4 NTDescent(x, g, c0, {Gk}, {Tk})
Require: g , 0, c0 ∈ (0, 1]

1: Set x0 = x and g0 = g.
2: for k = 0, 1, . . . do
3: xk+1 = linesearch(xk, gk,max{∥gk∥, c0∥g0∥},Gk,Tk).
4: Choose gk+1 ∈ ∂c f (xk+1).
5: end for

The workhorse of NTDescent is the line search procedure in Algorithm 3

(linesearch). Let us briefly comment on the structure of this method. Lines 2

through 6 of Algorithm 3 implement a line search on σ. Line 7 chooses the Goldstein

subgradient that provides the most descent while enforcing the trust-region constraint

σi ≤
∥vi+1∥

s . Line 7 also ensures the NTDescent is a descent method. Within the line

search procedure, we evaluate TDescent and NDescent a total of G times each. Not all

calls to TDescent and NDescentwill succeed with descent within the allotted budget T .

Still, we will show that for typical problems, at least one will generate sufficient descent

provided xk is close enough to a local minimizer and T is sufficiently large. The reason

at least one will succeed with descent is that given any x sufficiently near the solution

and parameters G and T sufficiently large, linesearch will find a σ such that (x, σ)

is in either the normal or tangent region described in Section 6.1.4. The line search al-

lows the possibility that σ is as large as 1/2, which might force xk+1 to leave the region

surrounding the minimizer x̄. This concern is what motivates the somewhat unusual
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structure of the line search method wherein the MinNorm-type methods are nested. In-

deed, on the one hand, the nesting ensures the norms of the Goldstein subgradients ∥vi+1∥

are decaying as σi increases. On the other hand, the trust region constraint ensures that

σi is not chosen too large, which we need for two technical reasons in our analysis:

(i) it prevents xk+1 from leaving a small neighborhood around the minimizer where our

regularity assumptions hold; (ii) we can only ensure TDescent terminates quickly when

σ ≤ δGrid, for a certain radius δGrid defined in Lemma 6.5.7, which may be substantially

smaller than 1/2.

Computationally, it may seem desirable to drop the trust region constraint. Figure 6.5

shows this may not be the case. We suspect the reason is two-fold: First, the trust region

constraint allows us to cut off a range ofσ from our search, which might otherwise waste

oracle calls; indeed, since ∥vi+1∥ is nonincreasing in i, and σi is increasing, once the trust

region is violated, it will be violated for all larger i. Second, although we may take

longer steps by disabling the trust region constraint, the amount of descent we expect

is on the order of Ω(σi∥vi+1∥). Thus, since the norms ∥vi+1∥ are nonincreasing, larger

stepsizes σi do not necessarily translate to larger descent.

Finally, we comment on our motivation for choosing the scaling sk =

max{∥gk∥, c0∥g0∥} in the trust region constraint. First, note that it is possible to prove,

using identical techniques, that the NTDescent converges when one replaces sk by any

positive sequence bounded from above and below by positive constants. For our partic-

ular choice of sk, the term c0∥g0∥ ensures the sequence is bounded below, while the local

Lipschitz continuity of f ensures that sk is bounded above. Second, we wish for the

trust region constraint to be unaffected by rescalings of f . Our choice of sk guarantees

scaling invariance since the subgradients of a f are simply the subgradients of f scaled

by a for any positive constant a. One might introduce other schemes for choosing s, but
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we did not explore such strategies. Finally, we found that performance of NTDescent is

relatively insensitive to the choice of c0 > 0, and any c0 ∈ {10−i : i = 0, 2, 4, 6} yielded

adequate performance; see Figures 6.6e and 6.6f.
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Figure 6.5: Comparison of NTDescent on Problem (6.1.1) with the trust region con-
straint in Line 6 of Algorithm 3 removed. Left: we fix d and vary m; Right: we fix m
and vary d. We invite the reader to compare these plots with Figure 6.1.

6.1.8 Main convergence guarantees for NTDescent

The main contribution of this chapter is a local, nearly linear convergence rate for

NTDescent. The local rate holds under a key structural assumption – Assumption Q

– which formalizes the typical structure concept and mirrors the simple function’s struc-

ture considered in Section 6.1.5. While we formally describe Assumption Q in Sec-

tion 6.3, for now, we mention that it holds for max-of-smooth and properly Cp decom-

posable functions, provided the local minimizer x̄ is a strong local minimizer that sat-

isfies a strict complementarity condition; this class includes the max-of-smooth setting

considered in [104]. Assumption Q also holds for generic linear tilts of semialgebraic

functions: if f is semialgebraic, then for a full Lebesgue measure set of w ∈ Rd, As-
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sumption Q holds at every local minimizer x̄ of the tilted function fw : x 7→ f (x) + w⊤x.

We now present the theorem.

Theorem 6.1.1 (Main convergence theorem). Let f : Rd → R satisfy Assumption Q at a

local minimizer x̄ ∈ Rd. Fix scalar c0 ∈ (0, 1], budget {Tk} and grid size {Gk} sequences

satisfying

min{Tk,Gk} ≥ k + 1 for all k ≥ 0.

Suppose that for initial point x0 ∈ R
d, there exists a subgradient g0 ∈ ∂c f (x0) such that

g0 , 0. Consider iterates {xk} generated by NTDescent(x0, g0, c0, {Gk}, {Tk}). For any

q, k0,C > 0, let Ek0,q,C denote the event:

f (xk) − f (x̄) ≤ max{( f (xk0) − f (x̄))qk−k0 ,Cqk} for all k ≥ k0.

Then there exists q ∈ (0, 1), C,C′ > 0, and a neighborhood U of x̄ depending solely on

f such that for any failure probability p ∈ (0, 1) and all k0 ≥ C′max{log(1/p), 1}, we

have

P(Ek0,q,C | xk0 ∈ U) ≥ 1 − p,

provided P(xk0 ∈ U) > 0. Moreover, if f is convex, we have

P(Ek0,q,C) ≥ 1 − p.

The theorem, justified in Theorems 6.6.3 and 6.6.5, bounds the function gap and

distance by a quantity that geometrically decays in k. Let us examine the local com-

plexity. Recall that each outer iteration of NTDescent requires at most 2TkGk first-order

oracle evaluations. Thus, if Tk = Gk = k + 1 for all k ≥ 0, the total number of ora-

cle evaluations of K steps of NTDescent is at most O(K3). In other words, the local

complexity of achieving an ε optimal solution is O(log3(1/ε)) for all sufficiently small

ε > 0, where the big-O notation hides terms depending on the local conditioning of f ;

see Lemma 6.6.6. Therefore, the theorem establishes a local nearly linear convergence

rate for NTDescent.
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6.1.9 Outline

The outline of this chapter is as follows. In Section 5.2, we present notation and basic

constructions. This section describes a key structure – the active manifold – and cannot

be skipped. In Section 6.2, we present the sublinear convergence guarantees, which

will be helpful in the convex setting. This section also introduces key properties of the

NDescent method, which will be used later in the chapter. In Section 6.3, we introduce

our central structural assumption – Assumption Q – and show that it is satisfied for

the generic semialgebraic and decomposable problem classes. In Section 6.4, we show

that Assumption Q implies the gradient inequality (6.1.5). In Section 6.5, we show that

the TDescent and NDescent methods terminate rapidly under appropriate conditions.

In Section 6.6, we use the gradient inequality (6.1.5) and Assumption Q to prove that

NTDescent locally nearly linearly converges. Finally, in Section 6.7 we provide a brief

numerical illustration. This chapter is based on the work [27].

6.2 Global sublinear convergence of NTDescent

The main goal of this chapter is to show that NTDescent locally converges nearly lin-

early for “typical” nonsmooth optimization problems. A natural question is whether

NTDescent also possesses global nonasymptotic convergence guarantees. In this sec-

tion, we prove two such guarantees: First, for arbitrary Lipschitz functions, we analyze

the rate at which dist(0, ∂σi f (xk)) tends to zero as a function of k. Second, for convex

Lipschitz functions, we analyze the rate at which f (xk) tends to inf f .

In the proofs of this section, the TDescent loop is ignored as we can only prove

it terminates with descent near the minimizer. Instead, the global convergence guaran-
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tees follow from the properties of NDescent. Thus, our analysis follows that of [108],

where a nearly identical MinNormmethod was introduced. The main difference between

the NDescent and the method of [108] lies in the perturbation radius in Line 3 of Al-

gorithm 1: while the radius of NDescent can be computed with access only to σ∥gt∥,

the radius in [108] requires knowledge of the Lipschitz constant of f , which we do not

assume. Finally, we mention that [108] did not consider convergence rates for convex

problems.

Before stating the main result, we recall three key Lemmas that underlie the proof.

The first lemma shows that the vectors ui and vi generated by linesearch are Goldstein

subgradients of decreasing norm.

Lemma 6.2.1 (Properties of linesearch). Let f : Rd → R be a locally Lipschitz func-

tion. Fix x ∈ Rd, subgradient g ∈ ∂c f (x), budget T , and grid size G. Let ui and vi be

generated by linesearch(x, g,G,T ). Then

ui, vi+1 ∈ ∂σi f (x) and ∥vi+1∥ ≤ ∥ui∥ ≤ ∥vi∥ (6.2.1)

for all i = 0, . . . ,G − 1.

Proof. The proof follows by induction. We prove the base case only since the induction

is straightforward. First note that the inclusion v0 ∈ ∂c f (x) implies that u0 ∈ ∂σ0 f (x),

since TDescent constructs u0 as a convex combinations of subgradients evaluated in

the ball Bσ0(x̄). Likewise, due to the argmin operation on line 4 of Algorithm 2, the

subgradients generated by TDescent are decreasing in norm. Consequently, we have

∥u0∥ ≤ ∥v0∥. A similar argument shows that v1 ∈ ∂σ0 f (x) and ∥v1∥ ≤ ∥u0∥. This com-

pletes the proof. □

The following lemma shows that when f is convex, the minimal norm Goldstein
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subgradient may be used to bound the function values. Since it follows from a standard

argument, we place the proof in Appendix 7.3.1.

Lemma 6.2.2 (Subgradient inequality). Suppose f : Rd → R is a continuous convex

function. Let x, y ∈ Rd. Let L denote a Lipschitz constant for f on the ball B2σ(x). Then

f (x) − f (y) ≤ ∥x − y∥dist(0, ∂σ f (x)) + 2σL.

The final lemma provides conditions under which NDescent terminates with descent

with high probability. The result is closely related to [108, Corollary 2.6], , but we take

extra care to analyze the perturbation radius in Line 3 of Algorithm 1.

Lemma 6.2.3 (NDescent loop terminates with descent). Let f be a locally Lipschitz

function. Fix initial point x ∈ Rd, radius σ > 0, subgradient g ∈ ∂σ f (x), and failure

probability p ∈ (0, 1). Furthermore, let L be a Lipschitz constant of f on the ball B2σ(x).

Suppose that

σ ≤
dist(0, ∂σ f (x))
√

128L
; and T ≥

⌈
64L2

dist2(0, ∂σ f (x))

⌉
⌈2 log(1/p)⌉ .

Define g+ := NDescent(x, g, σ,T ). Then ∥g+∥ , 0 and the point x+ := x−σ g+
∥g+∥

satisfies

f (x+) ≤ f (x) −
σdist(0, ∂σ f (x))

8
with probability at least 1 − p.

Proof. First note that g+ ∈ ∂σ f (x), so ∥g+∥ ≥ dist(0, ∂σ f (x)) > 0. Now, observe that

NDescent is precisely [108, Algorithm 1] with a different bound on the perturbation

radius r. Indeed, in [108, Algorithm 1], r must satisfy

r < ∥gt∥

√
1 −

(
1 −
∥gt∥

2

128L2

)2

for all t ≥ 0. We now show that the constraint r ≤ σ∥gt∥ implies the above bound. To

that end, define the univariate function h : a 7→
√

1 − (1 − a2

128L2 )2. Then h is increasing
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in a for a ≤ L. Moreover, for a ∈ [0, L], we have h(a) ≥ a
√

128L
. Consequently, since

dist(0, ∂σ f (x)) ≤ ∥gt∥ ≤ L

for all t ≤ T , we have

r < σ∥gt∥ ≤
dist(0, ∂σ f (x))∥gt∥

√
128L

≤ h(dist(0, ∂σ f (x)))∥gt∥ ≤ h(∥gt∥)∥gt∥.

Thus, the proof is a direct application of [108, Corollary 2.6]. □

Given these lemmata, we are ready to state and prove our main sublinear conver-

gence guarantee.

Theorem 6.2.4 (Sublinear convergence). Let f : Rd → R be a locally Lipschitz function.

Fix initial point x0 ∈ R
d and subgradient g0 ∈ ∂c f (x0). Assume that g0 , 0. Let

L ∈ R ∪ {+∞} be any Lipschitz constant of f over the widened sublevel set

S := {x + u : f (x) ≤ f (x0) and u ∈ B(x)}.

Fix a scalar c0 ∈ (0, 1], budget sequence {Tk}, grid size sequence {Gk}, and failure

probability p ∈ (0, 1). Let {xk} be generated by NTDescent(x, g, c0, {Gk}, {Tk}). Then for

all K > 0, the following holds with probability at least 1−p: Define G := minK≤k≤2K−1 Gk

and T := minK≤k≤2K−1 Tk. Then for all i ≤ G, the following bound holds with σi :=

2−(G−i):

min
K≤k≤2K−1

dist(0, ∂σi f (xk)) ≤ max
8( f (xK) − inf f )

σiK
,

16L
√

2 log(KG/p)
√

T
,
√

128Lσi

 .
Finally, suppose that f is convex and D := diam({x ∈ Rd : f (x) ≤ f (x0)}) < +∞. Then

f (x2K−1) − inf f ≤ min
i≤G

D max
8( f (xK) − inf f )

σiK
,

16L
√

2 log(KG/p)
√

T
,
√

128Lσi

 + 2Lσi

 .
(6.2.2)
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Proof. Let us assume that L < +∞; otherwise, the result is trivial. Fix K > 0 and i ≤ G.

Define

ϵi := max
16L

√
2 log(KG/p)
√

T
,
√

128Lσi

 .
For every K ≤ k ≤ 2K − 1, define

xk,i := xk − σi
vi+1

∥vi+1∥
, where vi+1 := NDescent(xk, ui, σi,Tk),

and ui appear in the definition of linesearch(xk, gk,max{∥gk∥, c0∥g0∥},Gk,Tk); see

Algorithm 3. Note that vi+1 ∈ ∂σi f (xk) by Lemma 6.2.1. Thus, in the event

{dist(0, ∂σi f (xk)) ≥ ϵi}, we have

1. xk,i is well-defined since vi+1 , 0;

2. the trust region constraint σi ≤
∥vi+1∥

s is satisfied for s = max{∥gk∥, c0∥g0∥} (in

Algorithm 3); indeed,

∥vi+1∥

s
≥

dist(0, ∂σi f (xk))
s

≥

√
128Lσi

s
≥ σi,

where the final inequality follows from the bound s ≤ L, a consequence of the

inclusion x0 ⊆ int S and the Lipschitz continuity of f on S .

Finally, for every K ≤ k ≤ 2K − 1, define

Ak,i :=
{

f (xk,i) − f (xk) ≥ −
σidist(0, ∂σi f (xk))

8

}
∩ {dist(0, ∂σi f (xk)) ≥ ϵi}.

Now we apply Lemma 6.2.3.

To that end, observe that since f (xk) is nonincreasing and σi ≤ 1/2, every iterate xk

satisfies B2σi(xk) ⊆ S . Consequently, L is a Lipschitz constant of f on B2σi(xk). There-

fore, by Lemma 6.2.3, for every K ≤ k ≤ 2K − 1, we have

P(Ak,i) ≤ P(Ak,i | dist(0, ∂σi f (xk)) ≥ ϵi) ≤
p

GK
. (6.2.3)
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Thus, by a union bound, with probability at least 1 − p
G , at least one of the following

must hold at every index K ≤ k ≤ 2K − 1:

f (xk,i) − f (xk) ≤ −
σidist(0, ∂σi f (xk))

8
or dist(0, ∂σi f (xk)) ≤ ϵi.

If dist(0, ∂σi f (xk)) ≤ ϵi for some k satisfying K ≤ k ≤ 2K − 1, then the result follows.

On the other hand, suppose that for all K ≤ k ≤ 2K − 1, we have dist(0, ∂σi f (xk)) > ϵi;

in particular, we have dist(0, ∂σi f (xk)) >
√

128Lσi. Therefore, with probability at least

1 − p
G , we must have

f (xk+1) ≤ f (xk,i) ≤ f (xk) −
σidist(0, ∂σi f (xk))

8
, for all K ≤ k ≤ 2K − 1.

where the first inequality follows since the trust region constraint is satisfied for xk,i.

Iterating this inequality, we have with probability at least 1 − p
G , the bound

min
K≤k≤2K−1

dist(0, ∂σi f (xk)) ≤
1
K

2K−1∑
k=K

dist(0, ∂σi f (xk)) ≤
8( f (xK) − f (x2K))

σiK
.

This proves the result for i. A union bound over i yields the bound for minimal norm

Goldstein subgradient for all i ≤ G.

To prove (6.2.2), fix an i ≤ G and let ki be the index that attains the minimum. Then

f (x2K−1) − inf f ≤ f (xki) − inf f ≤ dist(xki ,X∗) min
K≤k≤2K−1

dist(0, ∂σi f (xk)) + 2σiL,

where the first inequality follows since f (xk) is nonincreasing and the second inequality

follows from Lemma 6.2.2. The proof then follows from the upper bound dist(xki ,X) ≤

D. □

The theorem provides bounds on the minimal norm Goldstein subgradient within

any window of indices K ≤ k ≤ 2K − 1. Let us briefly investigate the setting Tk = k + 1

for all k ≥ 0. In this case, the theorem implies that with probability at least 1 − p, we

have

min
K≤k≤2K−1

dist(0, ∂σi f (xk)) ≤ max
8( f (xK) − inf f )

σiK
,

16L
√

2 log(KG/p)
√

2K
,
√

128Lσi
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for all i ≤ G. Let us now suppose G is large enough that there exists i ≤ G satisfying

(1/2)K−1/2 ≤ σi ≤ K−1/2, e.g., we may assume Gk = Ω(log(k1/2)) for all k > 0. Then,

we find that at most O(KTG) = O(K2G) first-order oracle evaluations are needed to find

a point xk satisfying

dist(0, ∂K−1/2 f (xk)) = Õ(K−1/2),

where Õ hides logarithmic terms in G,K and p. Let’s consider two settings for Gk.

1. Setting 1: Gk = O(log(k1/2)). In this case, NTDescent finds a point xk satisfying

dist(0, ∂ε f (xk)) ≤ ε using at most Õ(ε−4) first-order oracle evaluations.

2. Setting 2: Gk = k + 1. In this case, NTDescent finds a point xk satisfying

dist(0, ∂ε f (xk)) ≤ ε using at most Õ(ε−6) first-order oracle evaluations.

The complexity of Setting 1 is more favorable than the complexity of Setting 2. Never-

theless, when we establish our local rapid convergence guarantees, we will work in Set-

ting 2, which has more favorable local convergence properties. Before moving on, we

note that the above guarantees likewise apply in the convex setting, namely NTDescent

finds a point xk with f (xk)− f ∗ ≤ ε using at most Õ(ε−4), respectively Õ(ε−6), first-order

oracle evaluations in Setting 1, respectively Setting 2.

In addition to the nonasymptotic guarantees of Theorem 6.2.4, the reader may won-

der whether a given limit point x̄ of NTDescent is Clarke critical, meaning 0 ∈ ∂c f (x̄).

We prove that this is indeed the case under a bounded sublevel set condition. We place

the proof in Appendix 7.3.3 since it follows a similar line of reasoning as Theorem 6.2.4.

Corollary 6.2.5 (Limiting points are Clarke critical). Let f : Rd → R be a locally Lip-

schitz function. Fix initial point x0 ∈ R
d and subgradient g0 ∈ ∂c f (x0). Assume that

g0 , 0. Suppose the sublevel set {x : f (x) ≤ f (x0)} is bounded. Fix scalar c0 ∈ (0, 1],

budget sequence {Tk}, grid size sequence {Gk} such that {Gk} tends to infinity and Tk ≥ k.
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Let {xk} be generated by NTDescent(x, g, c0, {Gk}, {Tk}). Then, with probability one, all

the limiting points of {xk} are Clarke critical.

This concludes our sublinear convergence guarantees for NTDescent. In the fol-

lowing section, we describe the key structural assumptions needed to ensure that

NTDescent locally rapidly converges.

6.3 Main assumption, examples, and consequences

This section introduces our key structural assumption – Assumption Q. In Section 6.3.1,

we show that Assumption Q holds for generic semialgebraic functions and certain prop-

erly Cp decomposable functions. Then, in Section 6.3.2, we extract several key con-

sequences of Assumption Q. These consequences will be instrumental in proving the

gradient inequality (6.1.5) and rapid convergence of NTDescent. We now turn to the

assumption.

Assumption Q. Function f : Rd → R is locally Lipschitz with local minimizer x̄ ∈ Rd.

(Q1) (Quadratic Growth) There exists γ > 0 such that

f (x) − f (x̄) ≥
γ

2
∥x − x̄∥2 for all x near x̄.

(Q2) (Active Manifold) Function f admits a C4-smooth active manifoldM around x̄.

(Q3) (Strong-(a) regularity) There exists C(a) > 0 such that

∥PTM(y)(v−∇M f (y))∥ ≤ C(a)∥x−y∥ for all x ∈ Rd, v ∈ ∂c f (x), and y ∈ M near x̄.

(Q4) ((b≤)-regularity) The following inequality holds

f (y) ≥ f (x) + ⟨v, y − x⟩ + o(∥y − x∥) as y
M
→ x̄ and x→ x̄ with v ∈ ∂c f (x),
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where o(·) is any univariate function satisfying limt→0 o(t)/t = 0.

Some comments are in order. Assumption (Q1) is a classical regularity condition that

ensures local linear convergence of gradient methods for smooth convex functions. As-

sumptions (Q2), (Q3), and (Q4) describe the interaction of f and a distinguished smooth

manifoldM. Assumption (Q2) requiresM to be an active manifold for f around x̄ in

the sense of Definition 2.4.1. In particular, along the manifoldM, the function f is C4

smooth with covariant gradient ∇M f ; see Section 5.2 for a definition. Assumption (Q3)

shows that in tangent directions, the covariant gradient along the manifold approximates

the subgradients of f up to a linear error. Finally, Assumption (Q4) is a restricted lower

smoothness property, showing that linear models of f off the manifold are underapprox-

imators of f on the manifold up to first-order. Note that the property is automatic if f is

weakly convex, meaning the mapping x 7→ f (x) + ρ

2∥x∥
2 is convex for some ρ ≥ 0. The

weakly convex class is broad and contains all compositions of convex functions with

smooth mappings that have Lipschitz Jacobians; see the survey [119] for an introduc-

tion. The last two assumptions were extensively studied in Chapter 3. We refer readers

to Theorem 3.1.4 and Theorem 3.1.6 for details.

In the following section, we provide examples of functions satisfying Assumption Q.

6.3.1 Examples of Assumption Q

This section shows that the problems above satisfy Assumption Q. The most impor-

tant example is the class of generic semialgebraic functions. The following theorem is

essentially contained in [7, 25], but we provide a proof for completeness.

Theorem 6.3.1 (Generic semialgebraic functions). Consider a locally Lipschitz semial-

gebraic function f : Rd → R. Then, for a full Lebesgue measure set of w ∈ Rd, the tilted
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function fw : x 7→ f (x) + w⊤x satisfies Assumption Q at every local minimizer.

Proof. The proof is a consequence of [25, Theorem 3.31] and [7, Corollary 4.8, Theo-

rem 4.16]. A combination of Corollary 4.8 and Theorem 4.16 in [7] shows that for a full

Lebesgue measure set of w ∈ Rd, the following hold: every local minimizer x̄ of fw lies

on a C4 active manifold M, verifying (Q2); and the quadratic growth condition (Q1)

holds at x̄. Next, [25, Theorem 3.31] shows that fw also satisfies the strong (a) prop-

erty (Q3) alongM; applying [25, Theorem 3.11 and Theorem 3.4], we deduce that fw

also satisfies the (b≤)-regularity property (Q4) alongM at x̄. □

Turning to our second class, we introduce so-called properly Cp decomposable func-

tions, originally proposed and analyzed in [5]. At a high level, the class consists of func-

tions that are locally the composition of a sublinear function with a smooth mapping,

which together satisfy a transversality condition.

Definition 6.3.2 (Decomposable functions). A function f : Rd → R is called properly

Cp decomposable at x̄ as h ◦ c if near x̄ it can be written as

f (x) = f (x̄) + h(c(x))

for some Cp-smooth mapping c : Rd → Rm satisfying c(x̄) = 0 and some proper, closed

sublinear function h : Rm → R satisfying the transversality condition:

lin(h) + range(∇c(x̄)) = Rm.

The following theorem shows that decomposable functions satisfy Assumption Q

near local minimizers if they satisfy a strict complementarity condition and a quadratic

growth bound. The proof is a consequence of results found in works [2, 5, 6, 25].
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Theorem 6.3.3 (Properly decomposable functions). Consider a locally Lipschitz func-

tion f : Rd → R. Let x̄ be a local minimizer of f and suppose that f is properly C4

decomposable at x̄. Furthermore, suppose that

1. (Strict Complementarity) We have that 0 ∈ ri ∂c f (x̄).

2. (Quadratic growth) There exists γ > 0 such that

f (x) − f (x̄) ≥
γ

2
∥x − x̄∥2 for all x near x̄.

Then f satisfies Assumption Q at x̄.

Proof. To set the notation for the proof, recall that since f is properly C4 decomposable,

there exist functions h and c satisfying the conditions of Definition 6.3.2. The discussion

in [5, p. 683-4] then shows that the set

M := c−1(lin(h))

is a so-called C4 manifold of partial smoothness for f around x̄ in the sense of Lewis [2].

Moreover, f is prox-regular at x̄ for 0 in the sense of [64, Definition 1.1], since by defini-

tion it is strongly amenable [64, Definition 2.4] at x̄; see [64, Proposition 2.5]. Thus, ac-

cording to [120, Theorem 4.10], partial smoothness, prox-regularity, and strict comple-

mentarity ensure that the sharpness condition of Definition 2.4.1 holds. Consequently,

M is a C4 smooth active manifold around x̄, verifying (Q2). In addition, [25, Corollary

3.24] ensures that f satisfies the (Q3) and (Q4) properties alongM. □

A popular class of decomposable objectives arises from the pointwise maxima of

smooth functions that satisfy an affine independence property. For example, this class

was considered in the work of Han and Lewis [104]. As an immediate corollary of

Theorem 6.3.3, we show that such functions satisfy Assumption Q.
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Corollary 6.3.4 (Max-of-smooth functions). Consider a locally Lipschitz function f

and a family of C4 smooth functions fi : Rd → R indexed by a finite set i ∈ I. Fix a

local minimizer x̄ of f and suppose the set {∇ fi(x̄)}i∈I is affinely independent. Suppose

furthermore that f is locally expressible as

f (x) := max
i∈I

fi(x) for all x near x̄.

Then, provided the strict complementarity and quadratic growth conditions of Theo-

rem 6.3.3 hold, the function f satisfies Assumption Q at x̄.

Proof. To prove the result, note that the affine independence property is simply a re-

statement of the transversality condition of Definition 6.3.2 for the smooth mapping

x 7→ ( fi(x))i∈I and the sublinear function y 7→ maxi∈I yi. □

We now turn our attention to the key consequences of Assumption Q.

6.3.2 Key consequences of Assumption Q

The following proposition summarizes the key consequences of Assumption Q. The

proof of the result is straightforward but technical, so we place it in Appendix 7.3.2.

Proposition 6.3.5 (Consequences of Assumption Q). Suppose f satisfies Assumption Q

at x̄. Then there exists δA > 0 such that on the ball B2δA(x̄), the projection operator

PM is C3 with Lipschitz Jacobian and the smooth extension fM := f ◦ PM is C3 with

Lipschitz gradient. Moreover, the following bounds hold:

1. (Quadratic growth) The quadratic growth bound (Q1) holds throughout B2δA(x̄).

166



2. (Smoothness of PM) For all x ∈ BδA(x̄) and x′ ∈ B2δA(x̄), we have

∥PM(x′) − PM(x) − PTM(PM(x))(x′ − x)∥ ≤ CM(dist2(x,M) + ∥x − x′∥2), (6.3.1)

where CM := 2lipop
∇PM

(x̄).

3. (Bounds on ∇M f ) For all x ∈ BδA(x̄), we have

γ

2
∥PM(x) − x̄∥ ≤ ∥∇M f (PM(x))∥ ≤ β∥PM(x) − x̄∥, (6.3.2)

where β := 2lip∇ fM(x̄).

4. (Consequence of strong (a)) For all x ∈ BδA(x̄) and σ ≤ δA, we have

sup
g∈∂σ f (x)

∥PTM(PM(x))(g − ∇M f (PM(x)))∥ ≤ C(a)(dist(x,M) + σ); (6.3.3)

sup
g∈∂σ f (x)

∥PTM(PM(x))g∥ ≤ C(a)(dist(x,M) + σ) + β∥PM(x) − x̄∥;

(6.3.4)

sup
g,g′∈∂σ f (x)

∥PTM(PM(x))(g − g′)∥ ≤ 2C(a)(dist(x,M) + σ). (6.3.5)

5. (Aiming) For all x ∈ BδA(x̄) and all v ∈ ∂c f (x), we have

⟨v, x − PM(x)⟩ ≥ µ dist(x,M), (6.3.6)

where µ := 1
4 lim inf

x′
Mc
→ x̄

dist(0, ∂c f (x′)).

6. (Subgradient bound) For all x ∈ BδA(x̄) and σ ≤ δA, we have

sup
g∈∂σ f (x)

∥g∥ ≤ L,

where L := 2lip f (x̄)

7. (Function gap) For all x ∈ BδA(x̄), we have

f (x) − f (x̄) ≤ Ldist(x,M) +
β

2
∥PM(x) − x̄∥2. (6.3.7)
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Let us briefly comment on the result. Item 2 provides a crucial smoothness prop-

erty of the projection operator ofM. Item 3 shows that the Riemannian gradient of f is

proportional to the distance of the projection y to x̄. Item 4 shows how the Goldstein sub-

gradients inherit the strong (a) property (Q3) of Assumption Q. Indeed, Equation (6.3.4)

shows that Goldstein subgradients are “small” in tangent directions and Equation (6.3.5)

shows Goldstein subgradients vary in an approximate Lipschitz fashion in tangent direc-

tions. Item 5 shows that the subgradients of f off of the manifold have a constant level

of alignment with the normal vector x− PM(x), i.e., the direction −v “aims” towards the

manifold. Note that µ > 0 due to the active manifold Assumption (Q2). The proof of

Item 5 is based on Assumptions (Q2) and (Q4); a similar result appears in [121, The-

orem D.2]. Item 6 provides a bound on the Goldstein subgradients of f near x̄; we

will appeal to this bound throughout the analysis without referencing this proposition.

Finally, Item 7 decomposes the function gap into two terms: the distance to the mani-

fold and the squared distance of the projection to the solution. The proof relies on the

smoothness of f along the manifold. Note that the trivial upper bound L∥x − x̄∥ for the

gap can be weaker than (6.3.7).

This concludes our discussion of Assumption Q. The following three sections es-

tablish further consequences: the gradient inequality (6.1.5) (Section 6.4); rapid local

convergence of NDescent and TDescent (Section 6.5); and rapid local convergence

of NTDescent (Section 6.6). We use the notation and results introduced in Proposi-

tion 6.3.5 in all three sections. Finally, the statements of the results in Section 6.4

and 6.5 contain several parameters/radii, which we will use in Section 6.6 to determine

the region of near linear convergence and the oracle complexity for NTDescent. For the

readers’ convenience, we have listed these parameters in Table 6.1.
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Parameter Definition

D1
µ

8(µ+L)

D2
µ

2

C1
γ

4

C2 min
{

γ

8C(a)
, min{1,1/δA}

2

}
C3

C2
1

8L

C4 min
{

β

C(a)(1+δA) ,
min{µ/δA,C3D2/β}

4(1+(1+δA)CM)(µ+L)) ,
1
2

}
C5 min

{
β

2C(a)
, C3D2

32C(a)β
,C4,

C2
4

}
δGI min

{
δA
4 ,

D1
CM

}
δND min

{
δGI,

D2

D1L
√

128

}
δGrid min

{
δA
2 ,

1
CM(D−1

1 +1) ,
µ

8(C(a)+β)

}
Table 6.1: Parameters used throughout Sections 6.4 and 6.5.

6.4 Verifying the gradient inequality (6.1.5) under Assumption Q

In this section, we establish the gradient inequality (6.1.5) for functions satisfying As-

sumption Q. Throughout the section, we assume that Assumption Q is in force. We also

use the notation in Proposition 6.3.5.

We present the formal statement and the gradient inequality (6.1.5) in Theorem 6.4.3,

which appears at the end of this section. The proof is a consequence of the two lemmata.

In the first lemma, we prove a constant-sized lower bound for dist(0, ∂σ f (x)), whenever

σ is sufficiently small. The proof of this bound relies on the active manifold assump-

tion (Q2) and the aiming inequality (6.3.6). A consequence of the argument is that all

elements of ∂σ f (x) are correlated with the normal direction x − PM(x) ∈ NM(PM(x)).

Later in Proposition 6.5.1, we will also show that Algorithm 1 (NDescent) terminates

rapidly when σ is in the region, motivating the name Normal Descent. We now turn to

the lemma.
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Lemma 6.4.1 (Lower bound on Goldstein subgradients I). Define

D1 :=
µ

8(µ + L)
; D2 :=

µ

2
; and δGI := min

{
δA

4
,

D1

CM

}
.

Then for all x ∈ BδGI(x̄) and 0 < σ ≤ D1dist(x,M), we have

dist(0, ∂σ f (x)) ≥ D2.

Proof. We begin with some preliminary bounds. Fix x ∈ BδGI(x̄) and σ > 0 satisfying

the lemma assumptions. We observe that

σ ≤ D1dist(x,M) ≤ dist(x,M) ≤ ∥x − x̄∥ ≤ δGI,

where the second inequality follows since D1 ≤ 1 and the third follows since x̄ ∈ M.

Consequently,

LCM(σ2 + dist2(x,M)) ≤ δGILCM(σ + dist(x,M))

≤ 2LδGICMdist(x,M)

≤ 2LD1dist(x,M), (6.4.1)

where the first inequality follows from the bound max{σ, dist(x,M)} ≤ δGI and the

second follows from the bound σ ≤ dist(x,M). We now turn to the proof.

Now, let x′ ∈ Bσ(x) ⊆ BδA(x̄) and observe that by aiming condition (6.3.6),

⟨v, x′ − PM(x′)⟩ ≥ µdist(x′,M) for all v ∈ ∂c f (x′).

We claim that ⟨v, x − PM(x)⟩ ≥ D2dist(x,M) for all v ∈ ∂c f (x′). Indeed, for all v ∈

∂c f (x′) we may upper bound the inner product as follows:

⟨v, x′ − PM(x′)⟩

≤ ⟨v, x − PM(x)⟩ + ∥v∥∥x′ − PM(x′) − x − PM(x)∥
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≤ ⟨v, x − PM(x)⟩ + L∥(I − PTM(PM(x)))(x − x′)∥ + LCM(σ2 + dist2(x,M))

≤ ⟨v, x − PM(x)⟩ + 3LD1dist(x,M),

where the second inequality follows from the bound ∥v∥ ≤ L and Item 2 of Proposi-

tion 6.3.5; and the third inequality follows from ∥x−x′∥ ≤ σ ≤ D1dist(x,M) and (6.4.1).

Consequently, for all v ∈ ∂c f (x′), we have

⟨v, x − PM(x)⟩ ≥ µdist(x′,M) − 3LD1dist(x,M)

≥ µdist(x,M) − µσ − 3LD1dist(x,M)

≥ µ(1 − D1(1 + 3L/µ))dist(x,M)

= D2dist(x,M), (6.4.2)

where the second inequality follows from 1-Lipschitz continuity of dist(·,M); and the

final inequality follows from the bound D1 ≤
1

2(1+3L/µ) . This proves the claim.

Now, fix g ∈ ∂σ f (x). By definition of ∂σ f (x), there exists a family of coefficients

λi ∈ [0, 1], points xi ∈ Bσ(x) ⊆ BδA(x̄), and subgradients gi ∈ ∂c f (xi) indexed by a finite

set i ∈ I such that
∑

i∈I λi = 1 and g =
∑

i∈I λigi. Thus, by (6.4.2), we have

⟨g, x − PM(x)⟩ =
∑
i∈I

λi ⟨gi, x − PM(x)⟩ ≥ D2dist(x,M).

Therefore, we have

∥g∥ ≥
⟨g, x − PM(x)⟩

dist(x,M)
≥ D2,

as desired. □

In the second lemma, we provide a lower bound for dist(0, ∂σ f (x)) on the order

of ∥PM(x) − x̄∥, provided σ = O(∥PM(x) − x̄∥). The proof of this bound relies on

quadratic growth (Q1) and strong (a)-regularity (Q3). A consequence of the argument

is that the minimal norm element of ∂σ f (x) is close to the tangent vector ∇M f (PM(x)) ∈

171



TM(PM(x)). Later in Proposition 6.5.6, we will also show that Algorithm 2 (TDescent)

terminates rapidly when σ is in the region, motivating the name Tangent Descent. We

now turn to the lemma.

Lemma 6.4.2 (Lower bound on Goldstein subgradients II). Define

C1 :=
γ

4
; and C2 := min

{
γ

8C(a)
,

min{1, 1/δA}

2

}
.

Then for all x ∈ BδA(x̄) and σ ≥ 0 satisfying

max{dist(x,M), σ} ≤ C2∥PM(x) − x̄∥,

we have

∥PTM(PM(x))(g)∥ ≥ C1∥PM(x) − x̄∥ for all g ∈ ∂σ f (x).

Proof. Note that the term 1/δA in the definition of C2 is unnecessary; however, it will

be crucial in the proof of Theorem 6.4.3. Turning to the proof, fix x ∈ BδA(x̄) and σ ≥ 0

satisfying the lemma assumptions. Define y = PM(x). Note that

σ ≤ C2∥y − x̄∥ ≤ 2C2∥x − x̄∥ ≤ δA.

Thus, by (6.3.3), for all g ∈ ∂σ f (x), we have

∥PTM(y)(g − ∇M f (y))∥ ≤ C(a)(dist(x,M) + σ) ≤
γ

4
∥y − x̄∥.

In addition, by (6.3.2), we have ∥∇M f (y)∥ ≥ γ

2∥y − x̄∥. Therefore, for all g ∈ ∂σ f (x), we

have

∥PTM(y)(g)∥ ≥ ∥∇M f (y)∥ −C(a)(dist(x,M) + σ) ≥
γ

4
∥y − x̄∥,

as desired. □
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Given these lemmata, we are ready to establish the gradient inequality (6.1.5). The

following theorem verifies the bound

σdist(0, ∂σ f (x)) ≥ η( f (x) − f (x̄)),

for some η > 0 provided x is sufficiently near x̄ and (x, σ) lies within one of two regions,

described in Item 1 and Item 2 of Theorem 6.4.3. Item 1 and Item 2 roughly correspond

to the regions considered in Lemma 6.4.1 and Lemma 6.4.2, respectively. Comparing

with the statement of the gradient inequality (6.1.5), we see that gradient inequality of

Theorem 6.4.3 does not require knowledge of an explicit function σ(x). Instead, we

need only find some σ proportional to D1dist(x,M) or C2∥PM(x) − x̄∥ up to a factor

of, say, 2. Later in Proposition 6.6.1, we show that this flexibility allows us to find an

appropriate σ through the linesearch procedure.

Theorem 6.4.3 (Gradient inequality). Suppose that function f satisfies Assumption Q

at x̄ ∈ Rd. For any constants a1 ∈ (0,D1] and a2 ∈ (0,C2], we have

σdist(0, ∂σ f (x)) ≥ min
{

γa2

8 max{4La2
2, β}

,
µa1

4 max{2L, β/a2
2}

}
( f (x) − f (x̄)),

whenever x ∈ BδGI(x̄) and σ > 0 satisfy Item 1 or Item 2:

1. (a) a1
2 dist(x,M) ≤ σ ≤ a1dist(x,M);

(b) a2
2∥PM(x) − x̄∥2 ≤ dist(x,M).

2. (a) a2
2 ∥PM(x) − x̄∥ ≤ σ ≤ a2∥PM(x) − x̄∥;

(b) dist(x,M)
σ
≤ 2a2∥PM(x) − x̄∥.

Moreover, for any x ∈ BδGI(x̄)\{x̄}, there exists σ > 0 such that Item 1 or Item 2 is

satisfied.
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Proof. We first show that for any x ∈ BδGI(x̄)\{x̄}, there exists σ > 0 such that either

Item 1 or Item 2 is satisfied. We consider two cases. First, suppose x ∈ M. Then Item 2

is trivially satisfied for σ = a2∥PM(x) − x̄∥. Second, suppose x <M and Item 1 cannot

be satisfied for any σ > 0. In this case, we have

dist(x,M) ≤ a2
2∥PM(x) − x̄∥2 = 2a2σ∥PM(x) − x̄∥ with σ := a2∥PM(x) − x̄∥/2.

Thus, Item 2 is satisfied.

Now we prove the gradient inequality is satisfied whenever σ satisfies Item 1 or

Item 2. Let us suppose that Item 1 holds for some x ∈ BδGI(x̄) and σ > 0. From (6.3.7),

we have the bound:

1
max{2L, β/a2

2}
( f (x) − f (x̄)) ≤

1
max{2L, β/a2

2}

(
Ldist(x,M) +

β

2
∥PM(x) − x̄∥2

)
≤

1
2

(
dist(x,M) + a2

2∥PM(x) − x̄∥2
)

≤ dist(x,M).

Now observe that the assumptions of Lemma 6.4.1 are satisfied since x ∈ BδGI(x̄), a1 ≤

D1, and x and σ satisfy Item 1. Therefore, we have

σdist(0, ∂σ f (x)) ≥ σD2 ≥
µa1

4
dist(x,M) ≥

µa1

4 max{2L, β/a2
2}

( f (x) − f (x̄)),

as desired.

Next, let us suppose that Item 2 holds for some x ∈ BδGI(x̄) and σ > 0. From (6.3.7),

we have the bound:

1
max{4La2

2, β}
( f (x) − f (x̄)) ≤

1
max{4La2

2, β}

(
Ldist(x,M) +

β

2
∥PM(x) − x̄∥2

)
≤

1
2

(
dist(x,M)

2a2
2

+ ∥PM(x) − x̄∥2
)

≤
1
2

(dist(x,M)∥PM(x) − x̄∥
2a2σ

+ ∥PM(x) − x̄∥2
)
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≤ ∥PM(x) − x̄∥2.

Now observe that since a2 ≤ C2 and x and σ satisfy Item 2, we have

σ ≤ C2∥PM(x) − x̄∥ ≤ 2C2δGI ≤ (1/δA)(δA/4) ≤ 1,

where we use the bound C2 ≤ 1/2δA. Consequently, we have

dist(x,M) ≤ 2σC2∥PM(x) − x̄∥ ≤ C2∥PM(x) − x̄∥.

Therefore, max{dist(x,M), σ} ≤ C2∥PM(x) − x̄∥, so the conditions of Lemma 6.4.2 are

satisfied (recall δGI ≤ δA). Thus, let g denote the minimal norm element of ∂σ f (x) and

let us apply Lemma 6.4.2:

dist(0, ∂σ f (x)) = ∥g∥ ≥ ∥PTM(PM(x))(g)∥ ≥
γ

4
∥PM(x) − x̄∥.

Consequently, we have

σdist(0, ∂σ f (x)) ≥
σγ

4
∥PM(x) − x̄∥ ≥

γa2

8 max{4La2
2, β}

( f (x) − f (x̄)),

where the last inequality follows from σ ≥ a2
2 ∥PM(x)− x̄∥. This completes the proof. □

Remark 1. Note that a1, a2 ∈ (0, 1) as claimed in Section 6.1.4, where we introduced

the normal and tangent regions appearing in the statement of Theorem 6.4.3.

This concludes the proof of the gradient inequality (6.1.5) under Assumption Q.

In Section 6.6, we will use the gradient inequality to establish rapid local conver-

gence of NTDescent. Before proving that, the following section analyzes TDescent

and NDescent methods.

175



6.5 Rapid termination of NDescent and TDescent under Assump-

tion Q

In this section, we analyze the NDescent and TDescent methods, showing that both

methods rapidly terminate with descent in appropriate regions. Throughout the sec-

tion, we assume that Assumption Q is in force. We also use the results and notation of

Proposition 6.3.5, Table 6.1, Lemma 6.4.1, and Lemma 6.4.2.

The main results of this section are Propositions 6.5.1 and 6.5.6, which analyze

NDescent and TDescent, respectively. Proposition 6.5.1 shows that NDescent termi-

nates with descent in a constant number of iterations within the region considered in

Item 1 of Theorem 6.4.3. Proposition 6.5.6 shows that TDescent either terminates with

descent in O(log−1( f (x) − f (x̄))) iterations or f (x) − f (x̄) is already exponentially small

in T within the region considered in Item 2 of Theorem 6.4.3. These lemmata will be

the basis of our main convergence theorem – Theorem 6.6.3 – appearing in Section 6.6.

6.5.1 Analysis of NDescent

The following proposition shows that NDescent locally terminates in finitely many it-

erations whenever σ is sufficiently small. The result is a simple consequence of Lem-

mas 6.2.3 and 6.4.1.

Proposition 6.5.1 (NDescent loop terminates with descent). Define a radius

δND := min
{
δGI,

D2

D1L
√

128

}
.

Then for all x ∈ BδND(x̄), radii σ > 0 with σ ≤ D1dist(x,M), subgradients g ∈ ∂σ f (x),

176



failure probabilities p ∈ (0, 1) and budgets T > 0 satisfying

T ≥
⌈
64L2

D2
2

⌉
⌈2 log(1/p)⌉ ,

the point x+ := NDescent(x, g, σ,T ) satisfies

f (x+) ≤ f (x) −
σdist(0, ∂σ f (x))

8
with probability at least 1 − p.

Proof. Fix x ∈ BδND(x̄) and σ > 0 satisfying the lemma assumptions. Observe that

σ ≤ D1dist(x,M) ≤ D1δND ≤ min
{
δGI,

D2

L
√

128

}
,

where the final inequality follows from the bound D1 ≤ 1; see Lemma 7.3.2. Thus, by

Lemma 6.4.1, we have dist(0, ∂σ f (x)) ≥ D2 (recall δND ≤ δGI). Consequently,

σ ≤
D2

L
√

128
≤

dist(0, ∂σ f (x))

L
√

128
.

Therefore, σ and T satisfy the assumptions of Lemma 6.2.3. Hence, the desired descent

condition is guaranteed with probability at least 1 − p. □

We now turn to the analysis of the TDescent step.

6.5.2 Analysis of TDescent

In this section, we analyze TDescent, proving two main results. First, we prove Propo-

sition 6.5.6, which shows that TDescent terminates rapidly. Second, in Lemma 6.5.8,

we show that the trust region constraint in Line 7 of Algorithm 3 (linesearch) pre-

vents long steps. Thus, once the method enters a sufficiently small neighborhood of x̄,

it cannot leave.

We begin with descent Proposition 6.5.6, which relies on four technical lemmata

that analyze the structure of Goldstein subgradients when σ is sufficiently small and
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x is sufficiently near x̄: Lemma 6.5.2 states that elements of Goldstein subdifferential

with small normal components are descent directions. Lemmas 6.5.3 and 6.5.4 show

that normalized subgradient steps approximately reflect points across the active man-

ifold. Lemma 6.5.5 uses the approximate reflection property to show that TDescent

geometrically decreases the normal component of the input subgradient, ensuring that

we rapidly find a descent direction. We now turn to the Lemmata.

6.5.2.1 Descent with small normal part

The first lemma shows that Goldstein subgradients with small normal components are

descent directions.

Lemma 6.5.2 (Descent with small normal part). Define

C3 :=
C2

1

8L
.

Then for all x ∈ BδA(x̄), σ > 0, and g ∈ ∂σ f (x)\{0} satisfying

1. max{dist(x,M), σ} ≤ C2
4 ∥PM(x) − x̄∥;

2. ∥PNM(PM(x))(g)∥ ≤ C3∥PM(x) − x̄∥2,

we have

f
(
x − σ

g
∥g∥

)
≤ f (x) −

σ∥g∥
8

.

Proof. We begin with preliminary notation and bounds. We fix x ∈ BδA(x̄) and subgra-

dient g ∈ ∂σ f (x)\{0}. We define y := PM(x), T := TM(y), and N := NM(y). We observe

that

σ ≤
C2

4
∥y − x̄∥ ≤

C2

2
∥x − x̄∥ ≤ C2δA ≤ δA,
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where the final inequality follows since C2 ≤ 1; see Lemma 6.4.2. We now turn to the

proof.

The starting point of the proof is Lebourg’s mean value Theorem [31, Theorem 2.4],

which ensures that there exists v ∈ ∂σ f (x) such that

f
(
x − σ

g
∥g∥

)
− f (x) =

〈
v,−σ

g
∥g∥

〉
= −

σ

∥g∥
⟨v, PT (g)⟩ −

σ

∥g∥
⟨v, PN(g)⟩ .

In what follows, we will show that the first term satisfies ⟨v, PT (g)⟩ ≥ 3
8∥g∥

2, while the

second term satisfies | ⟨v, PN(g)⟩ | ≤ 1
8∥g∥

2, yielding the result.

Indeed, beginning with | ⟨v, PN(g)⟩ |, we note that

∥PN(g)∥ ≤ C3∥PM(x) − x̄∥2 ≤
C3

C2
1

∥g∥2 =
1

8L
∥g∥2, (6.5.1)

where the second inequality follow from Lemma 6.4.2. Consequently, we have the

bound | ⟨v, PN(g)⟩ | ≤ L∥PN(g)∥ ≤ 1
8∥g∥

2, where we first inequality relies on the estimate

∥v∥ ≤ L; see Item 6 of Proposition 6.3.5.

Next, we prove a lower bound on ⟨v, PT (g)⟩. Since v ∈ ∂σ f (x),

∥PT (v − g)∥ ≤ 2C(a)(dist(x,M) + σ) ≤ C2C(a)∥PM(x) − x̄∥ ≤
C2C(a)

C1
∥g∥ ≤

1
2
∥g∥.

where the first inequality follows from (6.3.5); the second by assumption; the third

follows from Lemma 6.4.2; and the fourth follows from the bound C2 ≤
C1

2C(a)
. Therefore,

∥PT (v) − g∥ ≤ ∥PT (v − g)∥ + ∥PN(g)∥ ≤
1
2
∥g∥ +

1
8L
∥g∥2 ≤

5
8
∥g∥,

where the second inequality follows from (6.5.1) and the third follows from the bound

∥g∥ ≤ L. Consequently, we have the bound

⟨v, PT (g)⟩ = ⟨PT (v), g⟩ ≥ ∥g∥2 − ∥PT (v) − g∥∥g∥ ≥
3
8
∥g∥2.

This completes the proof. □
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Note that the proof implies a slightly stronger bound than claimed, namely that we

have f (x − σg/∥g∥) ≤ f (x) − σ∥g∥/4. To maintain symmetry with Proposition 6.5.1,

however, we use the constant 1/8 throughout.

6.5.2.2 The approximate reflection property

The next two lemmata prove the approximate reflection property described in the in-

troduction. The lemmas roughly show that normalized subgradient steps approximately

“flip the sign” of the normal component of the subgradient near the manifold; see Sec-

tion 6.1.5 for more intuition. The first lemma proves the approximate reflection property

up to a tolerance depending on the distance to the manifold and σ. This lemma will be

used again in the proofs of Lemma 6.5.4 and Lemma 6.5.7.

Lemma 6.5.3 (Approximate reflection inequality, general case). For all x ∈

BδA/2(x̄), σ ∈ (0, δA/2], g ∈ ∂σ f (x)\{0} and ĝ ∈ ∂c f
(
x − σ g

∥g∥

)
, we have

⟨PNM(PM(x))(ĝ), g⟩

≤ −µ∥PNM(PM(x))g∥ +
(µ + L)∥g∥dist(x,M)

σ
+

(µ + L)∥g∥CM(dist2(x,M) + σ2)
σ

.

(6.5.2)

Proof. We begin with preliminary notation and bounds. We fix x ∈ BδA/2(x̄) and sub-

gradient g ∈ ∂σ f (x)\{0}. We define y := PM(x), T := TM(y), and N := NM(y). Finally,

define u := g
∥g∥ . Note that since x ∈ BδA/2(x̄) and σ ≤ δA/2, we have x − σu ∈ BδA(x̄).

Therefore, by the aiming inequality (6.3.6), we have

⟨ĝ, x − σu − PM (x − σu)⟩︸                            ︷︷                            ︸
=:A

≥ µ ∥x − σu − PM (x − σu)∥︸                           ︷︷                           ︸
=:B

.

We aim to simplify this inequality with (6.3.1). To that end, first note that

∥(x − σu − PM(x − σu)) − (x − PM(x) − σPN(u))∥ = ∥PM(x − σu) − PM(x) + σPT (u)∥
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≤ CM(dist2(x,M) + σ2). (6.5.3)

Consequently, we have

A ≥ B ≥ µ∥x − PM(x) − σPN(u)∥ − µCM(dist2(x,M) + σ2) ≥ σµ∥PN(u)∥ − µS ,

where S := dist(x,M) +CM(dist2(x,M) + σ2). In addition, by (6.5.3) we have

⟨ĝ, (x − σu − PM (x − σu)) + σPNu⟩ ≤ LS .

Therefore, we have

⟨ĝ, σPN(u)⟩ = −A + ⟨ĝ, (x − σu − PM (x − σu)) + σPNu⟩ ≤ −σµ∥PN(u)∥ + (µ + L)S .

(6.5.4)

Inequality (6.5.2) then follows by multiplying both sides of inequality (6.5.4) by ∥g∥/σ.

□

The second lemma is an application of Lemma 6.5.3 nearby the manifold.

Lemma 6.5.4 (Approximate reflection inequality near the manifold). Define

C4 := min
{

β

C(a)(1 + δA)
,

min{µ/δA,C3D2/β}

4(1 + (1 + δA)CM)(µ + L)
,

1
2

}
.

Then for all x ∈ BδA/2(x̄), σ > 0, and g ∈ ∂σ f (x)\{0} satisfying

max
{dist(x,M)

σ
,σ

}
≤ C4∥PM(x) − x̄∥,

we have

⟨PNM(PM(x))(ĝ), g⟩ ≤ −D2∥PNM(PM(x))g∥+
C3D2

2
∥PM(x)−x̄∥2 for all ĝ ∈ ∂c f

(
x − σ

g
∥g∥

)
.

Proof. We begin with preliminary notation and bounds. We fix x ∈ BδA/2(x̄) and subgra-

dient g ∈ ∂σ f (x)\{0}. We define y := PM(x), T := TM(y), and N := NM(y). We observe

that

σ ≤ C4∥y − x̄∥ ≤ 2C4∥x − x̄∥ ≤ C4δA ≤ δA/2.
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Finally, we have

S := dist(x,M) +CM(dist2(x,M) + σ2) ≤ σC4(1 +CM(1 + δA))∥y − x̄∥. (6.5.5)

where the inequality follows from the bound dist(x,M) ≤ ∥x − x̄∥ ≤ δA.

We now apply inequality (6.5.2):

⟨PN ĝ, g⟩ ≤ −µ∥PNg∥ +
(µ + L)∥g∥S

σ

≤ −µ∥PNg∥ + (1 + (1 + δA)CM)(µ + L)C4∥g∥∥y − x̄∥

≤ −µ∥PNg∥ + (1 + (1 + δA)CM)(µ + L)C4(∥PT (g)∥ + ∥PN(g)∥)∥y − x̄∥

≤ −
µ

2
∥PNg∥ +

C3D2

4β
∥PT (g)∥∥y − x̄∥,

where the second inequality follows from (6.5.5); the third inequality follows from tri-

angle inequality; and the fourth inequality follows from the bound

(1 + (1 + δA)CM)(µ + L)C4∥y − x̄∥ ≤
µ/δA

4
· (2∥x − x̄∥) ≤

µ/δA

4
δA ≤ µ/2.

The proof will be complete if we can show that

∥PT (g)∥ ≤ 2β∥y − x̄∥.

To that end, we have

∥PT (g)∥ ≤ C(a)(dist(x,M) + σ) + β∥y − x̄∥ ≤ (C4C(a)(1 + δA) + β)∥y − x̄∥ ≤ 2β∥y − x̄∥,

where the first inequality follows from (6.3.4); the second inequality follows from the

lemma assumptions and the bound dist(x,M) ≤ C4σ∥y− x̄∥ ≤ C4δA∥y− x̄∥; and the third

inequality follows from the bounds on C4. This completes the proof. □

6.5.2.3 The normal component shrinks geometrically

The following lemma shows that every step of TDescent geometrically shrinks the

normal component of the subgradient up to a tolerance of O(∥PM(x) − x̄∥2).
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Lemma 6.5.5 (Normal component shrinks geometrically). Define

C5 := min
{

β

2C(a)
,

C3D2

32C(a)β
,C4,

C2

4

}
.

Then for all x ∈ BδA/2(x̄), σ > 0, g ∈ ∂σ f (x)\{0}, and ĝ ∈ ∂c f (x − σ g
∥g∥ )\{0} satisfying

1. ∥PNM(PM(x))g∥ ≥ C3∥PM(x) − x̄∥2;

2. max
{

dist(x,M)
σ

, σ
}
≤ C5∥PM(x) − x̄∥,

the vector g′ = argminh∈[g,ĝ] ∥h∥ satisfies:

∥PNM(PM(x))(g′)∥2 ≤
(
1 −

3D2
2

64L2

)
∥PNM(PM(x))g∥2.

Proof. We begin with preliminary notation and bounds. We fix x ∈ BδA/2(x̄) and subgra-

dient g ∈ ∂σ f (x)\{0}. We define y := PM(x), T := TM(y), and N := NM(y). We observe

two bounds. First, we have

σ ≤ C5∥y − x̄∥ ≤ 2C5∥x − x̄∥ ≤ C5δA ≤ 1.

where the final inequality follows since C5 ≤ C2/4 ≤ 1/(8δA). Second, we have

dist(x,M) ≤ C5σ∥y − x̄∥ ≤ C5∥y − x̄∥, (6.5.6)

since σ ≤ 1. We now turn to the proof.

Consider the optimal weight λ′ := argminλ∈[0,1] ∥g+λ(ĝ− g)∥. By definition we have

g′ = g + λ′(ĝ − g). Moreover, a quick calculation shows that

λ′ = max
{
min

{
−
⟨g, ĝ − g⟩
∥ĝ − g∥2

, 1
}
, 0

}
.

We claim that the following bound holds on λ′:

−
⟨PN(g), ĝ − g⟩

8L2︸              ︷︷              ︸
=:λ1

≤ λ′ ≤ −
3 ⟨PN(g), ĝ − g⟩
2∥PN(ĝ − g)∥2︸              ︷︷              ︸

=:λ2

. (6.5.7)
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Note that (6.5.7) is an immediate consequence of the following bound:

0 ≤ −
1
2
⟨PN(g), ĝ − g⟩ ≤ − ⟨g, ĝ − g⟩ ≤ −

3
2
⟨PN(g), ĝ − g⟩ . (6.5.8)

Indeed, if (6.5.8) holds, then λ′ = min
{
−
⟨g,ĝ−g⟩
∥ĝ−g∥2 , 1

}
. Thus, we obtain the upper bound

λ′ ≤ −
⟨g, ĝ − g⟩
∥ĝ − g∥2

≤ −
3
2
⟨PN(g), ĝ − g⟩
∥g − ĝ∥2

≤ −
3
2
⟨PN(g), ĝ − g⟩
∥PN(g − ĝ)∥2

= λ2.

Likewise, we obtain the lower bound

λ′ = min
{
−
⟨g, ĝ − g⟩
∥ĝ − g∥2

, 1
}
≥ min

{
−
⟨g, ĝ − g⟩

4L2 , 1
}
= −
⟨g, ĝ − g⟩

4L2 ≥ −
⟨PN(g), ĝ − g⟩

8L2 = λ1,

where the first inequality follows from the bound ∥ĝ − g∥2 ≤ 2(∥ĝ∥2 + ∥g∥2) ≤ 4L2; and

the second equality follows from the bound | ⟨g, ĝ − g⟩ | ≤ ∥g∥∥ĝ − g∥ ≤ 2L2. Thus, we

now prove (6.5.8).

To that end, note that (6.5.8) is equivalent to the following bound:

|⟨PT (g), ĝ − g⟩| ≤
− ⟨PN(g), ĝ − g⟩

2
. (6.5.9)

Therefore, we first bound |⟨PT (g), ĝ − g⟩|:

|⟨PT (g), ĝ − g⟩| ≤ ∥PT (g)∥∥PT (ĝ − g)∥

≤ 2C(a)(dist(x,M) + σ)(C(a)(dist(x,M) + σ) + β∥y − x̄∥)

≤ 4C(a)C5(2C(a)C5 + β)∥y − x̄∥2

≤
C3D2

4
∥y − x̄∥2,

where the second inequality follows from (6.3.4) and (6.3.5); the third inequality follows

from (6.5.6) and the bound σ ≤ C5∥y − x̄∥; and the fourth inequality follows from

the definition of C5. To complete the proof of (6.5.9), we show that C3D2
4 ∥y − x̄∥2 ≤

−1
2 ⟨PN(g), ĝ − g⟩:

C3D2

2
∥y − x̄∥2 ≤ D2∥PN(g)∥ −

C3D2

2
∥y − x̄∥2
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≤ − ⟨PN(g), ĝ⟩

≤ − ⟨PN(g), ĝ − g⟩ , (6.5.10)

where the first inequality follows from the assumption D2
2 ∥PN(g)∥ ≥ C3D2

2 ∥y − x̄∥2; the

second inequality follows from Lemma 6.5.4 (recall C5 ≤ C4 and x ∈ BδA/2(x̄)); and

the third inequality follows from ⟨PN(g), g⟩ = ∥PN(g)∥2 ≥ 0. Thus, the equivalent

bounds (6.5.9) and (6.5.8) hold. Consequently, Equation (6.5.7) holds.

Now, we turn to the contraction argument. Consider the function r : R → R satisfy-

ing

r(λ) = ∥PN(g)∥2 + 2λ ⟨PN(g), ĝ − g⟩ + λ2∥PN(ĝ − g)∥2 for all λ ∈ R.

Observe that

∥PN(g′)∥2 = ∥PN(g)∥2 + 2λ′ ⟨PN(g), ĝ − g⟩ + (λ′)2∥PN(ĝ − g)∥2 = r(λ′).

Therefore, by convexity of r and (6.5.7), we have

∥PN(g′)∥2 = r(λ′) ≤ max
λ∈[λ1,λ2]

r(λ) ≤ max {r (λ1) , r (λ2)}.

To complete the proof, we show each term in the “max” is bounded by(
1 − 3D2

2
64L2

)
∥PN(g)∥2.

To show this, we will use the following consequence of (6.5.10):

− ⟨PN(g), ĝ − g⟩ ≥ D2∥PN(g)∥ −
C3D2

2
∥y − x̄∥2 ≥

D2

2
∥PN(g)∥, (6.5.11)

where the final inequality follows from the assumption C3D2
2 ∥y − x̄∥2 ≤ D2

2 ∥PN(g)∥. In-

deed, first, observe that

r (λ2) = ∥PN(g)∥2 −
3
4
⟨PN(g), ĝ − g⟩2

∥PN(ĝ − g)∥2

≤

(
1 −

3D2
2

16∥PN(ĝ − g)∥2

)
∥PN(g)∥2
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≤

(
1 −

3D2
2

64L2

)
∥PN(g)∥2,

where the first inequality from (6.5.11) and the second inequality follows from the bound

∥PN(ĝ − g)∥2 ≤ ∥ĝ − g∥2 ≤ 4L2. Likewise, observe that

r (λ1) = ∥PN(g)∥2 −
⟨PN(g), ĝ − g⟩2

4L2 +
⟨PN(g), ĝ − g⟩2 ∥PN(ĝ − g)∥2

64L4

≤ ∥PN(g)∥2 −
⟨PN(g), ĝ − g⟩2

4L2 +
⟨PN(g), ĝ − g⟩2

16L2

≤

(
1 −

3D2
2

64L2

)
∥PN(g)∥2,

where the first inequality follows from the bound ∥PN(ĝ − g)∥2 ≤ ∥ĝ − g∥2 ≤ 4L2; and

the second inequality follows from (6.5.11). Therefore, the proof is complete. □

TDescent terminates with descent. The following proposition is the main result of

this section. It shows that TDescent must either terminate with descent or f (x) − f (x̄)

is already exponentially small in T .

Proposition 6.5.6 (TDescent loop terminates with descent). Fix T ∈ N. Then for all

x ∈ BδA/2(x̄), v ∈ ∂σ f (x), and σ > 0 satisfying

max
{dist(x,M)

σ
,σ

}
≤ C5∥PM(x) − x̄∥,

at least one of the following holds:

1. we have

f (x) − f (x̄) ≤
(C2

5L + β)L
C3

(
1 −

3µ2

256L2

)T/2

;

2. the vector g := TDescent(x, v, σ,T ) satisfies ∥g∥ > 0 and

f
(
x − σ

g
∥g∥

)
≤ f (x) −

σdist(0, ∂σ f (x))
8

.
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Proof. We begin with preliminary notation and bounds. We fix x ∈ BδA/2(x̄) and subgra-

dient v ∈ ∂σ f (x). We define y := PM(x), and N := NM(y). Observe that

σ ≤ C5∥y − x̄∥ ≤ 2C5∥x − x̄∥ ≤ C5δA ≤ 1,

where the final inequality follows by definition of C5 ≤ C2/4 ≤ 1/(8δA). In addition,

since C5 ≤ C2/4, we have σ ≤ (C2/4)∥y − x̄∥ and

dist(x,M) ≤ σC5∥y − x̄∥ ≤
C2

4
∥y − x̄∥,

where the final inequality follows from σ ≤ 1. Consequently,

max{σ, dist(x,M)} ≤
C2

4
∥y − x̄∥. (6.5.12)

We now turn to the proof.

Turning to the proof, note that since x ∈ BδA/2(x̄), Lemma 6.4.2 and (6.5.12) ensure

that

dist(0, ∂σ f (x)) ≥ C1∥y − x̄∥ > 0.

Thus, if TDescent(x, v, σ,T ) terminates at t < T , then Item 2 must hold. For the

remainder of the proof, we suppose that TDescent(x, v, σ,T ) terminates at the final

iteration t = T and that Item 2 does not hold. In this case, Lemma 6.5.2 and (6.5.12)

ensure that the iterates gt of TDescent(x, v, σ,T ) satisfy ∥PN(gt)∥ > C3∥y − x̄∥2 for all

0 ≤ t ≤ T − 1. Therefore, since x ∈ BδA/2(x̄), max {dist(x,M)/σ, σ} ≤ C5∥y − x̄∥, and

∥PN(gt)∥ > C3∥y − x̄∥2, Lemma 6.5.5, yields the contraction:

∥PN(gt+1)∥2 ≤
(
1 −

3D2
2

64L2

)
∥PN(gt)∥2, for all 0 ≤ t ≤ T − 1.

Unfolding this contraction, we see that gT is an exponentially small Goldstein subgradi-

ent:

∥PN(gT )∥ ≤
(
1 −

3D2
2

64L2

)T/2

∥PN(g0)∥.
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As a result, the projection y is nearby x̄:

∥y − x̄∥2 ≤
∥PN(gT )∥

C3
≤
∥PN(g0)∥

C3

(
1 −

3D2
2

64L2

)T/2

≤
L

C3

(
1 −

3D2
2

64L2

)T/2

. (6.5.13)

Consequently,

f (x) − f (x̄) ≤ Ldist(x,M) + β∥y − x̄∥2

≤ (C2
5L + β)∥y − x̄∥2

≤
(C2

5L + β)L
C3

(
1 −

3D2
2

64L2

)T/2

,

where the first inequality follows from (6.3.7) (recall x ∈ BδA/2(x̄)); the second inequality

follows since dist(x,M) ≤ σC5∥y − x̄∥ ≤ C2
5∥y − x̄∥2; and the third inequality follows

from (6.5.13). The proof then follows from the identity D2 =
µ

2 . □

6.5.2.4 The “trust region” constraint prevents long steps

Before ending this section, we must establish one final technical result for TDescent.

Namely, in Lemma 6.5.8, we show that for appropriate σ, TDescent eventually gener-

ates small subgradients on the order of O(∥x − x̄∥). This property is intuitive because

dist(0, ∂σ f (x)) = 0 whenever σ ≥ ∥x − x̄∥. This property will help us ensure that the

iterates of NTDescent (Algorithm 4) cannot leave sufficiently small neighborhoods of

x̄. Indeed, since the subgradients vi+1 generated by Algorithm 3 (linesearch) are de-

creasing in norm, we will show that the trust region constraint σi ≤
∥vi+1∥

s in Line 7 of

Algorithm 3 must eventually be violated for large i. This ensures large σi are never

chosen.

To prove this claim, we first refine the approximate reflection property in

Lemma 6.5.4. Compared to Lemma 6.5.4, the following lemma deals with a differ-

ent range of parameters. We place the proof in Appendix 7.3.4 as it follows from a

similar line of reasoning as Lemma 6.5.4.
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Lemma 6.5.7 (Approximate reflection across manifold, large steps). Define

δGrid := min
{
δA

2
,

1
CM(D−1

1 + 1)
,

µ

8(C(a) + β)

}
.

Then for all x ∈ BδGrid(x̄), σ > 0, and g ∈ ∂σ f (x)\{0} satisfying

D−1
1 dist(x,M) ≤ σ ≤ δGrid,

we have

⟨ĝ, g⟩ ≤ −D2∥g∥ + 2D2∥PTM(PM(x))(g)∥ for all ĝ ∈ ∂c f
(
x − σ

g
∥g∥

)
.

Finally, we prove that TDescent eventually generates small subgradients.

Lemma 6.5.8 (TDescent yields small subgradients). Fix T ∈ N. Then for all x ∈

BδGrid(x̄), σ > 0, and g ∈ ∂σ f (x)\{0} satisfying

D−1
1 dist(x,M) ≤ σ ≤ δGrid,

the vector g′ := TDescent(x, g, σ,T ) satisfies

∥g′∥ ≤ max
(1 − µ2

64L2

)T/2

∥g∥, 4C(a)σ + 4(C(a) + 2β)∥x − x̄∥,
8( f (x) − f (x̄))

σ

 .
Proof. We begin with preliminary notation and bounds. We fix x ∈ BδGrid(x̄) and sub-

gradient g ∈ ∂σ f (x)\{0}. We define y := PM(x) and T := TM(y). We also define

c := C(a)(dist(x,M) + σ) + β∥y − x̄∥. We have the following two bounds: First, we have

c ≤ C(a)(∥x − x̄∥ + σ) + 2β∥x − x̄∥ ≤ C(a)σ + (C(a) + 2β)∥x − x̄∥. (6.5.14)

Second, by (6.3.4), we have

∥PT (v)∥ ≤ c for all v ∈ ∂σ f (x). (6.5.15)

We now turn to the proof.
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Note that the result holds automatically if g′ = 0. Thus, we first consider the case

where TDescent terminates in descent, meaning

f (x+) − f (x) ≤ −
σ∥g′∥

8
where x+ := x − σ

g′

∥g′∥
.

Since σ ≤ δGrid ≤ δA/2 and x ∈ BδA/2(x̄), it follows that x+ ∈ BδA(x̄). Thus, by Item 1 of

Proposition 6.3.5, we have

f (x+) ≥ f (x̄) +
γ

2
∥x − x̄∥2 ≥ f (x̄).

Consequently, we have

f (x̄) − f (x) ≤ −
σ∥g′∥

8
.

Rearranging then gives the upper bound ∥g′∥ ≤ 8( f (x)− f (x̄))
σ

, as desired.

Let us suppose that TDescent does not terminate with descent or g′ = 0. In this

case, the iterates g0, . . . , gT of TDescent(x, g, σ,T ) exist and satisfy gt ∈ ∂σ f (x) for all

t ≤ T . We consider two cases.

Case 1. Now suppose ∥gt∥ ≤ 4c for some t satisfying 0 ≤ t ≤ T . Since ∥gt∥ is a

decreasing sequence, it follows that ∥g′∥ = ∥gT ∥ ≤ 4c. Recalling (6.5.14), yields the

bound

∥g′∥ ≤ 4c ≤ 4C(a)σ + 4(C(a) + 2β)∥x − x̄∥,

as desired.

Case 2. Next suppose that for all 0 ≤ t ≤ T we have 4c < ∥gt∥. In this case,

Lemma 6.5.7 shows that for all t ≤ T , we have

⟨ĝt, gt⟩ ≤ −
µ

2
∥gt∥ + µ∥PT gt∥ ≤ −

µ

2
∥gt∥ + µc ≤ −

µ

4
∥gt∥. (6.5.16)
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We use this bound to prove a one-step geometric improvement bound for ∥gt∥
2. To that

end, fix any t ≤ T −1 and define the weight λ := µ∥gt∥

16L2 and the vector gλ := gt +λ(ĝt −gt).

Notice that λ ∈ [0, 1], since

λ =
µ∥gt∥

16L2 ≤
µ

16L
≤ 1,

where the first equation follows since gt ∈ ∂σ f (x) and the second follows since L ≥ µ;

see Lemma 7.3.2. Thus

∥gt+1∥
2 ≤ ∥gλ∥2 = ∥gt∥

2 + 2λ ⟨gt, ĝt − gt⟩ + λ
2∥ĝt − gt∥

2

≤ ∥gt∥
2 + 2λ ⟨gt, ĝt⟩ − 2λ∥gt∥

2 + 4L2λ2

≤ ∥gt∥
2 −

λµ

2
∥gt∥ + 4L2λ2

=

(
1 −

µ2

64L2

)
∥gt∥

2,

where the first inequality follows by definition of gt+1; the second inequality follows

from the fact that L is a local Lipschitz constant of f near x̄; and the third inequality

follows from (6.5.16). Thus, to complete the proof, unfold this recursion to get the

bound

∥g′∥ = ∥gT ∥ ≤

(
1 −

µ2

64L2

)T/2

∥g0∥
2,

as desired. □

6.6 Rapid local convergence of NTDescent

This Section presents our main convergence guarantees for the NTDescent method

under Assumption Q. The main results of the section are Theorem 6.6.3 and Theo-

rem 6.6.5, which analyze the nonconvex and convex settings, respectively. In the non-

convex setting, we prove that iterates of NTDescent locally nearly linearly converge,

provided some iterate reaches a sufficiently small neighborhood of x̄. In the convex set-

ting, we strengthen this guarantee, showing that for any initial starting point x0 and any
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failure probability p, there exists some index Kp after which NTDescent nearly con-

verges linearly with probability at least 1− p. Both results result from the local one-step

improvement bound of Proposition 6.6.1. This proposition shows that with high prob-

ability, the following hold locally for linesearch: its output is near its input, and the

function gap geometrically decreases whenever it is larger than a quantity exponentially

small in the inner loop budget and the grid size. The former property will help ensure

that the iterates of NTDescent do not escape a local neighborhood of x̄.

6.6.1 Assumptions and notation

This section assumes the following assumptions and notations are in force. We assume

that

1. the budget Tk and grid size Gk satisfy min{Tk,Gk} ≥ k + 1 for all k ≥ 0.

2. We fix an initial we an initial point x0 ∈ R
d and g0 ∈ ∂c f (x0). We assume that g0 ,

0. We assume Assumption Q is in force at a point x̄ ∈ Rd and use the notation of

Proposition 6.3.5 throughout. We let {xk} denote the sequence of iterates generated

by NTDescent(x0, g0, c0, {Gk}, {Tk}) when applied to f .

Turning to notation, we now summarize in Table 6.2 the main constants used in this

section.

In the following, we lower and upper bound the trust region parameter in

linesearch:

slb ≤ max{∥gk∥, c0∥g0∥} ≤ L, (6.6.1)

where the lower bound follows by definition, and the upper bound follows from Part 6 of

Proposition 6.3.5. In addition, we apply Theorem 6.4.3 with the constants a1, a2. These
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Parameter Definition

slb c0∥g0∥

a1 min{D1,D2/L}

a2
min{C1/L,C5}

2

δLS min
{
δA
2 , δGI, δND, δGrid,

1
2(a1+2a2) ,

γD2
1 min{δGrid/2,1/4}2

2L , 1
}

C6 max
{
1, 8(C(a)+2β+2C(a)D−1

1 )
slb

, 2D−1
1 ,

4γD1
slb

}
ϵ1,T max

{
(C2

5 L+β)L
C3

(
1 − 3µ2

256L2

)T/2
,
(
1 − µ2

64L2

)T/2
L
}

ϵ2,G max
{

L
min{1,a1}

+
β

2 min{1,a1}a2
2
, 8C(a), L

}
2−G

ρ 1 − 1
8 min

{
γa2

8 max{4La2
2,β}
, µa1

4 max{2L,β/a2
2}

}
Table 6.2: Parameters used throughout Section 6.6; see also Table 6.1.

constants are derived from the parameters D1, D2, C1, and C5 which are defined in

Lemmas 6.4.1, 6.4.2, and 6.5.5 respectively. We also define a neighborhood BδLS(x̄) for

which linesearch results in geometric improvement. Here, the radius δLS is derived

from the parameters δA, δGI, δND, δGrid, and γ which appear in Proposition 6.3.5 and

Lemmas 6.4.1, 6.5.1, 6.5.7, and 6.5.8. In addition, the constant C6 will appear in an

upper bound on the steplength of linesearch.

We then define three terms ϵ1,T , ϵ2,G, and ρ which appear in our convergence rate

analysis. These terms are defined for all T,G > 0 and are derived from the parame-

ters C5, C3, a1, a2, L, β, C(a), γ, and µ which appear in Lemma 6.5.2, Lemma 6.5.5,

Proposition 6.3.5, and Assumption Q.

Finally, in the following propositions, the constant ρ ∈ (0, 1) plays the role of a local

contraction factor, while the terms ϵ1,T and ϵ2,G are upper bounds for function gap of

NTDescent.

We now turn to the one-step improvement argument.
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6.6.2 One step improvement

The following proposition presents our one-step improvement bound.

Proposition 6.6.1 (One step improvement). Assume the assumptions of Section 6.6.1 are

satisfied. Recall the notation in Table 6.2. Then the following holds for all x ∈ BδLS(x̄),

subgradients g ∈ ∂c f (x), and grid sizes G > ⌈log2(1/δGrid)⌉: Fix a scalar s ∈ [slb, L], a

failure probability p ∈ (0, 1) and budget T satisfying

T ≥
⌈
256L2

µ2

⌉
⌈2 log(1/p)⌉ .

Then with probability at least 1 − p, the point x̃ = linesearch(x, g, s,G,T ) satisfies

1. f (x̃) − f (x̄) ≤ max{ρ( f (x) − f (x̄)), ϵ1,T , ϵ1,G};

2. ∥x̃ − x∥ ≤ C6 max
{
ϵ1,T/slb, ϵ2,G/slb,

√
2( f (x) − f (x̄))/min{slb, γ}

}
,

Proof. We fix x ∈ BδLS(x̄), define y := PM(x), and choose a subgradient g ∈ ∂c f (x).

Throughout, we may freely use the results of Proposition 6.3.5 since δLS ≤ δA. We will

first establish the first item of the proposition. To that end, let us assume that

f (x) − f (x̄) > max{ϵ1,T , ϵ2,G};

otherwise, the proof is trivial. In this case, we claim that x must satisfy either Item 1 or

Item 2 of Theorem 6.4.3 for at least one σi with i ≤ G − 1. To derive a contradiction,

suppose that both items are unsatisfied for x with any choice of σi with i = 0, . . . ,G− 1.

We will show that neither Item 1b nor its complement can be satisfied, leading to a

contradiction.

Throughout the following argument, we will use the following bound:

max{a1dist(x,M), a2∥y − x̄∥} ≤ (a1 + 2a2) δLS ≤
1
2
= σG−1.

194



Now suppose that Item 1b holds, i.e., a2
2∥y − x̄∥2 ≤ dist(x,M). Then by assumption,

Item 1a must fail for any σi. We claim that this failure ensures that σ0 > a1dist(x,M).

Indeed, if σ0 ≤ a1dist(x,M), we must have

σ0 ≤ (a1/2)dist(x,M) ≤ a1dist(x,M) ≤ σG−1,

since σ0 cannot satisfy Item 1a. Thus, there exists some j ≤ G − 1 such that σ j = 2 jσ0

satisfies Item 1a, a contradiction. Therefore, we have

σ0 > a1dist(x,M) ≥ a1a2
2∥y − x̄∥2.

In this case, by (6.3.7), we have

f (x) − f (x̄) ≤ Ldist(x,M) +
β

2
∥y − x̄∥2 ≤

(
L
a1
+

β

2a2
2a1

)
σ0 ≤ ϵ2,G,

which is a contradiction. Therefore, Item 1b cannot hold, so we have a2
2∥y − x̄∥2 >

dist(x,M).

Next, for the sake of contradiction, suppose that there exists σi satisfying Item 2a.

In this case, since σi ≥ (a2/2)∥y − x̄∥, we have

dist(x,M) < a2
2∥y − x̄∥2 ≤ 2a2σi∥y − x̄∥,

i.e., σi also satisfies Item 2b, which is a contradiction. Therefore no σi satisfies Item 2a.

We claim that this ensures σ0 > a2∥y − x̄∥. Indeed, if σ0 ≤ a2∥y − x̄∥, we must have

σ0 ≤ (a2/2)∥y − x̄∥ ≤ a0∥y − x̄∥ ≤ σG−1,

since σ0 cannot satisfy Item 2a. Thus, there exists some j ≤ G − 1 such that σ j = 2 jσ0

satisfies Item 2a, a contradiction. Therefore, we have

σ0 > a2∥y − x̄∥ ≥
√

dist(x,M).

In this case, by (6.3.7), we have

f (x) − f (x̄) ≤ Ldist(x,M) +
β

2
∥y − x̄∥2 ≤

(
L +

β

2a2
2

)
σ2

0 ≤ ϵ2,G,
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which is a contradiction. Therefore, there must exist σi satisfying either Item 1 or Item 2

of Theorem 6.4.3.

Let us now fix a σi satisfying either Item 1 or Item 2 of Theorem 6.4.3. Then, by

Theorem 6.4.3, we have the bound

σidist(0, ∂σi f (x)) ≥ 8(1 − ρ)( f (x) − f (x̄)).

In what follows, we will use the above bound to prove that with probability at least 1− p,

we have f (x̃) − f (x̄) ≤ ρ( f (x) − f (x̄)) whenever f (x) − f (x̄) > max{ϵ1,T , ϵ2,G}.

Contraction case 1: normal step. We first suppose that there exists σi satisfying

Item 1. In the interest of analyzing vi+1 ∈ ∂σi f (x), let us show that x, σi, and T satisfy

the conditions of Proposition 6.5.1: First x ∈ BδND(x̄) since δLS ≤ δND. Second, by Item 1a

of Theorem 6.4.3, we have

0 < σi ≤ a1dist(x,M) ≤ D1dist(x,M). (6.6.2)

Finally, from the definition D2 = µ/2, it follows that T satisfies the conditions of Propo-

sition 6.5.1. Therefore, with probability at least 1 − p, we have

f
(
x − σi

vi+1

∥vi+1∥

)
− f (x̄) ≤ f (x) − f (x̄) −

σi

8
dist(0, ∂σi f (x)) ≤ ρ( f (x) − f (x̄)).

Next, we show that vi+1 and σi satisfy the trust region condition σi ≤
∥vi+1∥

s . To

that end, note that the conditions of Lemma 6.4.1 are met: We have x ∈ BδGI(x̄) since

δLS ≤ δGI. We also have bound σi ≤ D1dist(x,M) from (6.6.2). Therefore, it follows

that the minimal norm Goldstein subgradient is lower bounded: dist(0, ∂σi f (x)) ≥ D2.

Consequently, we have

σi ≤ a1dist(x,M) ≤
D2δLS

s
≤

dist(0, ∂σi f (x))δLS
s

≤
∥vi+1∥

s
,
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where the second inequality follows from the definition of in Table 6.2 and the inequality

s ≤ L; and the fourth inequality follows from the bound δLS ≤ 1. Therefore, since the

trust region constraint σi ≤
∥vi+1∥

s is satisfied, the following holds with probability at least

1 − p:

f (x̃) − f (x̄) ≤ f
(
x − σi

vi+1

∥vi+1∥

)
− f (x̄) ≤ ρ( f (x) − f (x̄)).

Thus, the first item of the proposition follows.

Contraction case 2: tangent step. Next, we suppose that there exists σi satisfying

Item 2 of Theorem 6.4.3. In the interest of analyzing ui ∈ ∂σi f (x), let us show that x,

σi, and T satisfy the conditions of Proposition 6.5.6: x ∈ BδA/2(x̄) since δLS ≤ δA/2.

Second, by Item 2a of Theorem 6.4.3, we have

σi ≤ a2∥y − x̄∥ ≤ C5∥y − x̄∥.

Finally, by Item 2b of Theorem 6.4.3, we have

dist(x,M)/σi ≤ 2a2∥y − x̄∥ ≤ C5∥y − x̄∥.

Therefore, since f (x) − f (x̄) > ϵ1,T , Proposition 6.5.6 implies that

f
(
x − σi

ui

∥ui∥

)
− f (x̄) ≤ f (x) − f (x̄) −

σi

8
dist(0, ∂σi f (x)) ≤ ρ( f (x) − f (x̄)).

Next, we show that ui and σi satisfy the trust region condition σi ≤
∥ui∥

s . To show

this, we first note that σi and x satisfy the conditions of Lemma 6.4.2: First x ∈ BδA/2(x̄)

since δLS ≤ δA/2. Second, by Item 2a of Theorem 6.4.3, we have

σi ≤ a2∥y − x̄∥ ≤ C2∥y − x̄∥.

Finally, by Item 2 of Theorem 6.4.3, we have

dist(x,M) ≤ 2a2σi∥y − x̄∥ ≤ 2a2
2∥y − x̄∥2 ≤ C2∥y − x̄∥,
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where the third inequality follows from the bounds ∥y− x̄∥ ≤ 2δLS ≤ 1/a2 and a2 ≤ C2/2

(recall that C5 ≤ C2). Therefore, by Lemma 6.4.2 we have ∥ui∥ ≥ ∥PTM(y)ui∥ ≥ C1∥y− x̄∥.

Consequently, we have

σi ≤ a2∥y − x̄∥ ≤
C1∥y − x̄∥

s
≤
∥ui∥

s
,

where the second inequality follows from the definition of a2 in Table 6.2 and the in-

equality s ≤ L. To complete the proof, observe that vi+1 = ui: since the sufficient descent

condition is met, namely f (x − σiui/∥ui∥) ≤ f (x) − σ∥ui∥, NDescent terminates at the

first iteration. Therefore, we must have

f (x̃) − f (x̄) ≤ f
(
x − σi

vi+1

∥vi+1∥

)
− f (x̄) ≤ ρ( f (x) − f (x̄)),

as desired.

Having proved the desired contraction f (x̃) − f (x̄) ≤ ρ( f (x) − f (x̄)), we now turn to

the bound on ∥x̃ − x∥.

Stepsize bound. We now no longer assume that f (x) − f (x̄) > max{ϵ2,G, ϵ1,T }. We

claim that we have

max
0≤i≤G−1

{σi : σi ≤ ∥vi+1∥/s} ≤ C6 max
{
ϵ1,T/slb, ϵ2,G/slb,

√
2( f (x) − f (x̄))/min{slb, γ}

}
.

(6.6.3)

Note that inequality (6.6.3) immediately yields the second item of the proposition since

∥x̃ − x∥ ≤ max
0≤i≤G−1

{σi : σi ≤ ∥vi+1∥/s} .

To prove (6.6.3), we will apply Lemma 6.5.8.

To that end, first note that x ∈ BδGrid(x̄) since δLS ≤ δGrid. Next, we verify that there

exists an index i such that σi satisfies a slightly stronger version of the assumptions of
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Lemma 6.5.8. Indeed, recall that by the quadratic growth condition (Q1), we have the

bound

dist(x,M) ≤ ∥x − x̄∥ ≤
√

2( f (x) − f (x̄))/γ. (6.6.4)

Thus, to satisfy the assumptions of Lemma 6.5.8, we prove that there exists i such

that

Rx := D−1
1

√
2( f (x) − f (x̄))/γ ≤ σi ≤ δGrid. (6.6.5)

Indeed, first notice that σ0 ≤ δGrid since G ≥ ⌈log2(1/δGrid)⌉. Thus, if σ0 ≥ Rx, the

bound (6.6.5) holds for σ0. If instead σ0 < Rx, we have

σ0 < Rx ≤ D−1
1

√
2LδLS/γ ≤ min{δGrid/2, 1/4} ≤ min{δGrid, 1/2} ≤ 1/2 = σG−1,

where the second inequality follows since ∥x − x̄∥ < δLS and f is L−Lipschitz continu-

ous on BδLS(x̄); and the third inequality follows since δLS ≤ γD2
1 min{δGrid/2, 1/4}2/(2L).

Thus, there exists i such that σi ∈ [min{δGrid/2, 1/4},min{δGrid, 1/2}]. Since

min{δGrid/2, 1/4} ≥ Rx, inequality (6.6.5) follows.

Now let i∗ be the minimal such index such that (6.6.5) is satisfied for i = i∗. If i∗ , 0,

the bound σi∗−1 ≤ Rx holds. In particular, σi∗ ≤ 2Rx. Therefore, considering the cases

i∗ = 0 and i∗ , 0 separately, we have

Rx ≤ σi∗ ≤ max {σ0, 2Rx} . (6.6.6)

Now we bound the step length ∥x − x̃∥ by considering two cases.

First suppose that σi∗ > ∥ui∗∥/s. In this case, (6.2.1) ensures σi∗ > ∥vi∗+1∥/s. Then,

since σi is increasing in i, we have

max
0≤i≤G−1

{σi : σi ≤ ∥vi+1∥/s} ≤ σi∗ ≤ max {σ0, 2Rx}

≤ C6 max
{
ϵ2,G/slb,

√
2( f (x) − f (x̄))/min{slb, γ}

}
.
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≤ C6 max
{
ϵ1,T/slb, ϵ2,G/slb,

√
2( f (x) − f (x̄))/min{slb, γ}

}
,

which verifies (6.6.3). We now consider the alternative case.

Next suppose that σi∗ ≤ ∥ui∗∥/s. We consider two subcases. First, suppose that the

following bound also holds:

∥ui∗∥ ≤
8( f (x) − f (x̄))

σi∗
. (6.6.7)

Then, since σi∗ ≥ Rx, we have

∥ui∗∥ ≤

√
32γD2

1( f (x) − f (x̄)).

Second, suppose that (6.6.7) does not hold. Let us apply Lemma 6.5.8 to σ = σi∗:

∥ui∗∥ ≤ max
(1 − µ2

64L2

)T/2

L, 4C(a) max{σ0, 2Rx} + 4(C(a) + 2β)∥x − x̄∥


≤ max
(1 − µ2

64L2

)T/2

, 8C(a)σ0, 8(C(a) + 2β)∥x − x̄∥ + 16C(a)Rx


≤ max

{
1 · ϵ1,T , 1 · ϵ2,G, 8(C(a) + 2β + 2C(a)D−1

1 )
√

2( f (x) − f (x̄))/γ
}

≤ sC6 max{ϵ1,T/slb, ϵ2,G/slb,
√

2( f (x) − f (x̄))/γ},

where first inequality follows from Lemma 6.5.8 and bound (6.6.6); the second inequal-

ity follows from the bound: max{a, b}+ c ≤ a+b+ c ≤ 2 max{a, b+ c} for all a, b, c ≥ 0;

the third inequality follows by definition of ϵ1,T , ϵ2,G and Rx, and (6.6.4); and the last

inequality follows since C6 ≥ max{1, 8(C(a) + 2β + 2C(a)D−1
1 )/slb}.

Therefore, as long as σi∗ ≤ ∥ui∗∥/s, we have

∥ui∗∥/s ≤ max
{
C6 max{ϵ1,T/slb, ϵ2,G/slb,

√
2( f (x) − f (x̄))/γ},

√
32γD2

1( f (x) − f (x̄))/s2
lb

}
≤ C6 max

{
ϵ1,T/slb, ϵ2,G/slb,

√
2( f (x) − f (x̄))/γ

}
≤ C6 max

{
ϵ1,T/slb, ϵ2,G/slb,

√
2( f (x) − f (x̄))/min{slb, γ}

}
,
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where second inequality follows from the bound C6 ≥ 4γD1/(slb); and the third in-

equality follows from the bound (6.6.4). To complete the proof of (6.6.3), recall that

by (6.2.1), for all j > i∗, we have ∥v j∥ ≤ ∥ui∗∥. Consequently,

max
0≤i≤G−1

{σi : σi ≤ ∥vi+1∥/s}

≤ max {σi∗ , ∥ui∗∥/s}

= ∥ui∗∥/s

≤ C6 max
{
ϵ1,T/slb, ϵ2,G/slb,

√
2( f (x) − f (x̄))/min{slb, γ}

}
,

which verifies (6.6.3). □

6.6.3 Main convergence theorems

We are now ready to prove the main results of this chapter. This section aims to prove

that an event of the following form occurs with high probability.

Definition 6.6.2 (Ek0,q,C). For any k0 > 0, q ∈ (0, 1) and C > 0, let Ek0,q,C denote the

event that for all k ≥ k0, we have the following two bounds:

f (xk) − f (x̄) ≤ max{( f (xk0) − f (x̄))qk−k0 ,Cqk};

∥xk − x̄∥2 ≤
2
γ

max{( f (xk0) − f (x̄))qk−k0 ,Cqk}.

We will lower bound the probability of the event Ek0,q,C in both nonconvex and con-

vex settings for a particular choice of k0, q, and C. In the nonconvex setting, our result

will lower bound the conditional probability of Ek0,q,C, given that iterate xk0 enters a

sufficiently small neighborhood of x̄. To prove the result, we will iterate the one-step

improvement bound of Proposition 6.6.1. In the convex setting, we will lower bound the

unconditional probability of Ek0,q,C. To prove this result, we will combine the conditional

result with the sublinear convergence guarantee of Theorem 6.2.4.
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Before turning to the proofs, we introduce the main parameters common to noncon-

vex and convex settings.

Parameter Definition

C′ 2048L2

µ2

C max
{ (C2

5 L+β)L
C3

, L, L
min{1,a1}

+
β

2 min{1,a1}a2
2
, 8C(a)

}
q max

{
ρ,

√
1 − 3µ2

256L2 ,
1
2

}
δNTD min

{
δLS
4 ,

δ2
LSmin{slb,γ}(1−q1/2)2

32LC2
6

, δLSslb(1−q)
4LC6

}
K0

⌈
max

{
logq

(
δ2
LSmin{slb,γ}(1−q1/2)2

32CC2
6

)
, logq

(
δLSslb(1−q)

4CC6

)
, log2

(
1

δGrid

)}⌉
Table 6.3: Parameters used throughout Section 6.6.3; see also Tables 6.1 and 6.2.

6.6.3.1 The nonconvex setting.

The following theorem is our main convergence theorem in the nonconvex setting.

Theorem 6.6.3 (Main Theorem: Nonconvex Setting). Assume the assumptions outlined

at the start of Section 6.6 are satisfied. Recall the notation of Table 6.3. Fix a failure

probability p ∈ (0, 1) and an index k0 ≥ max {K0,C′ log (C′/p)}. Suppose P(xk0 ∈

BδNTD(x̄)) > 0. Then,

P(Ek0,q,C | xk0 ∈ BδNTD(x̄)) ≥ 1 − p.

Proof. We begin with preliminary notation and bounds. Fix k0 ≥ max{K0,C′ log(C′/p)}

and for all k ≥ k0, define the quantity

Rk := max{( f (xk0) − f (x̄))qk−k0 ,Cqk}.

Note that whenever xk0 ∈ BδNTD(x̄) we have the bound

Rk ≤ max{LδNTDqk−k0 ,Cqk}, (6.6.8)
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since f is L-Lipschitz continuous on Bδ(x̄).

Next, we prove that

max{ϵ1,Tk , ϵ2,Gk} ≤ Rk+1 for all k ≥ 0. (6.6.9)

Indeed, beginning with ϵ1,Tk , we have

ϵ1,Tk = max
 (C2

5L + β)L
C3

(
1 −

3µ2

256L2

)Tk/2

,

(
1 −

µ2

64L2

)Tk/2

L


≤ C max


(
1 −

3µ2

256L2

) Tk
2

,

(
1 −

µ2

64L2

) Tk
2


≤ Cqk+1 ≤ Rk+1,

where the first and second inequalities follow from the definitions of C and q together

with the lower bound Tk ≥ k + 1. Turning to ϵ2,Gk , we have

ϵ2,Gk = max
{

L
min{1, a1}

+
β

2 min{1, a1}a2
2

, 8C(a), L
}

2−Gk ≤ C2−Gk ≤ Cqk+1 ≤ Rk+1,

where the first and second inequalities follow from the definition of C and q together

with the lower bound Gk ≥ k + 1. Thus (6.6.9) holds.

Finally, we analyze the quantity

Dk0,δNTD :=
∞∑

k=k0

C6 max
{ √

2Rk/γ′,Rk+1/slb

}
where γ′ := min{slb, γ}.

We claim in particular that

Dk0,δNTD + δNTD ≤ δLS/2. (6.6.10)

Since δNTD ≤ δLS/4, it suffices to prove Dk0,δNTD ≤ δLS/4. To that end, we have

Dk0,δNTD =

∞∑
k=k0

C6 max
{ √

2Rk/γ′,Rk+1/slb

}
≤

∞∑
k=k0

C6 max
{ √

2 max{LδNTDqk−k0 ,Cqk}/γ′,max{LδNTDqk−k0/γ′,Cqk}/slb

}
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≤ C6 max
 √

2LδNTD
√
γ′(1 − q1/2)

,

√
2Cqk0

√
γ′(1 − q1/2)

,
LδNTD

slb(1 − q)
,

Cqk0

slb(1 − q)


≤
δLS
4
,

where the first inequality follows from the bounds (6.6.8) and the bound Rk+1 ≤ Rk;

the second inequality follows by summing the infinite series; and the third inequality

follows from the definitions of K0 and δNTD together with the bound k0 ≥ K0 . This

proves (6.6.10).

We now turn to the proof. Consider the following sequence defined for all k ≥ k0:

bk := δNTD +
k−1∑
j=k0

C6 max
{ √

2Rk/γ′,Rk+1/slb

}
.

Note that (6.6.10) ensures that bk ≤ δLS/2 for all k ≥ k0. Now, define the event

Fk0 := {xk0 ∈ BδNTD(x̄)}.

In addition, define the following decreasing sequence of events

Ak :=
k⋂

j=k0

{ f (x j) − f (x̄) ≤ R j and ∥x j − x̄∥ ≤ b j} .

We claim that

P(Ak+1 | Ak ∩ Fk0) ≥ 1 − exp(−Tk/C′) for all k ≥ k0. (6.6.11)

Indeed, Proposition 6.6.1 implies that conditioned on Ak ∩ Fk0 , the following four in-

equalities are satisfied with probability at least 1 − exp(−Tk/C′):

1. f (xk) − f (x̄) ≤ Rk

2. ∥xk − x̄∥ ≤ bk;

3. ∥xk+1 − xk∥ ≤ C6 max
{
ϵ1,Tk/slb, ϵ2,Gk/slb,

√
2( f (xk) − f (x̄))/γ′

}
;

4. f (xk+1) − f (x̄) ≤ max{ρ( f (xk) − f (x̄)), ϵ1,Tk , ϵ2,Gk}.
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(Note that in applying the Proposition 6.6.1, we use the scalar s = max{∥gk∥, c0∥g0∥}

and the inclusion s ∈ [slb, L], which was proved (6.6.1).) Thus, the bound (6.6.11) will

follow by induction if we can prove that whenever the above four inequalities hold, we

have ∥xk+1 − x̄∥ ≤ bk+1 and f (xk+1) − f (x̄) ≤ Rk+1.

To that end, we first prove ∥xk+1 − x̄∥ ≤ bk+1. Indeed,

∥xk+1 − x̄∥ ≤ ∥xk+1 − xk∥ + ∥xk − x̄∥

≤ C6 max
{
ϵ1,Tk/slb, ϵ2,Gk/slb,

√
2( f (xk) − f (x̄))/γ′

}
+ bk

≤ C6 max
{ √

2Rk/γ′,Rk+1/slb

}
+ bk = bk+1, (6.6.12)

where the second inequality follows from Proposition 6.6.1; and the third inequality

follows from the bound (6.6.9). Next, we prove the bound on f (xk+1) − f (x̄) ≤ Rk+1.

Indeed,

f (xk+1) − f (x̄) ≤ max{ρ( f (xk) − f (x̄)), ϵ1,Tk , ϵ2,Gk}

≤ max{ρmax{( f (xk0) − f (x̄))qk−k0 ,Cqk}, ϵ1,Tk , ϵ2,Gk}

≤ Rk+1,

where the final inequality follows from (6.6.9) and the bound ρ ≤ q. Consequently, the

bound (6.6.11) holds. Moreover, due to the bound Tk ≥ k + 1, we have

P(Ak+1 | Ak ∩ Fk0) ≥ 1 − exp(−Tk/C′) ≥ 1 − exp(−(k + 1)/C′). (6.6.13)

Now we relate Ak to Ek0,q,C. To that end, by the conditional law of total probability,

for all k ≥ k0, we have

P(Ak+1 | Fk0) ≥ P(Ak+1 | Ak ∩ Fk0)P(Ak | Fk0) ≥ P(Ak | Fk0) − exp(−(k + 1)/C′).

Therefore, for all k ≥ k0, we have

P(Ak | Fk0) ≥ P(Ak0 | Fk0) −
∞∑

j=k0+1

exp(− j/C′) = 1 −
exp(− k0+1

C′ )

1 − exp(− 1
C′ )
≥ 1 − p,
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where the equality follows since P(Ak0 | Fk0) = 1; and the final inequality follows by

definition of k0 ≥ C′ log(C′/p). Now recall that supk≥k0
bk ≤ δLS/2. Therefore, defining

the event

E′k0,q,C := { f (xk) − f (x̄) ≤ Rk for all k ≥ k0 and xk ∈ BδLS(x̄)},

we have

P(E′k0,q,C | Fk0) ≥ lim
k→∞

P(Ak | Fk0) ≥ 1 − p.

Next, recall that since δLS ≤ δA, the quadratic growth bound (Q1)

∥xk − x̄∥2 ≤
2
γ

( f (xk) − f (x̄)) ≤
2
γ

Rk

holds for every k ≥ k0 within the event E′k0,q,C
. Thus, Ek0,q,C ⊇ E′k0,q,C

. Therefore, we

have

P(Ek0,q,C | Fk0) ≥ P(E′k0,q,C | Fk0) ≥ 1 − p,

as desired. □

6.6.3.2 The convex setting.

Now, we turn to the convex setting. Our goal is to prove a lower bound on P(Ek0,q,C) for

q and C chosen as in Table 6.3 and all sufficiently large k0. Before stating the result, we

recall a simple fact about convex functions satisfying Assumption Q. A similar result ap-

pears in [122, Section 2.4], but for completeness we provide a proof in Appendix 7.3.6.

Lemma 6.6.4. In addition to the assumption set out at the start of the section, suppose

that function f is convex. Then for all a > 0, we have

{x ∈ Rd : f (x) − f (x̄) ≤ a} ⊆ Bra(x̄) where ra := max

 2a
γδA

,

√
2a
γ

 .
In particular, f has bounded sublevel sets.
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We now turn to our main theorem.

Theorem 6.6.5 (Main Theorem: Convex setting). Assume the assumptions of Sec-

tion 6.6.1 are satisfied. Recall the notation of Table 6.3. In addition, suppose that

function f is convex. Consider the bounded set

S := {x + u : f (x) ≤ f (x0) and u ∈ B(x)}.

Let L′ be a Lipschitz constant of f on S . Define the constants

a := min
{
γδAδNTD

4
,
γδ2
NTD

8

}
; and b := inf

α∈(0,1)

(
64L′

√
2
α

) 2
(1−α)

(
a

diam(S )

) 2α
(1−α)

.

Finally, define

K1 :=
⌈
4diam2(S )

a2 min
{
162( f (x0) − inf f )2,

b
4
, 2048L′2 log

(2
p

)
, 128(L′)2

}
+

(4L′)2

a2

⌉
.

Then, for every failure probability p ∈ (0, 1), we have

P(Ek0,q,C) ≥ 1 − p for all k0 ≥ max
{
K0,C′ log

(2C′

p

)
, 2K1 − 1

}
.

Proof. Theorem 6.6.3 shows that

P(Ek0,q,C | xk0 ∈ BδNTD(x̄)) ≥ 1 − p/2 for all k0 ≥ max
{
K0,C′ log

(2C′

p

)}
. (6.6.14)

We claim that

P(xk0 ∈ BδNTD(x̄)) ≥ 1 − p/2 for all k0 ≥ 2K1 − 1. (6.6.15)

Note that this yields the proof since in that case

P(Ek0,q,C) ≥ P(Ek0,q,C | xk0 ∈ U)P(xk0 ∈ BδNTD(x̄)) ≥ 1 + p2/4 − p ≥ 1 − p,

for all k0 ≥ max
{
K0,C′ log

(
2C′

p

)
, 2K1 − 1

}
.
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Observe that (6.6.15) will follow if

P( f (xk0) − f (x̄) ≤ a) ≥ 1 − p/2 for all k0 ≥ 2K1 − 1. (6.6.16)

Indeed, by Lemma 6.6.4, we have.

{x ∈ Rd : f (x) − f (x̄) ≤ a} ⊆ BδNTD/2(x̄) ⊆ BδNTD(x̄).

To prove (6.6.16), we apply Theorem 6.2.4. To that end, note that {x ∈ Rd : f (x) ≤ f (x0)}

and the widened sublevel set S are indeed bounded, due to Lemma 6.6.4. There-

fore D and the Lipschitz constant L′ of f on S are finite. Now observe G :=

minK1≤k≤2K1−1{Gk} ≥ K1 since Gk ≥ k + 1 for all k. Thus, there exists i ≤ G such

that

(1/2)K−1/2
1 ≤ σi ≤ K−1/2

1 .

Therefore, applying Theorem 6.2.4 (in particular (6.2.2)) with this σi, we have

f (x2K1−1) − f (x̄) ≤ D max

16( f (xK1) − inf f )

K1/2
1

,
16L′

√
2 log(2K2

1/p)

K1/2
1

,

√
128L′

K1/2
1

 + 2L′

K1/2
1

(6.6.17)

with probability at least 1− p/2. Thus, to complete the proof, we show that the left-hand

side of (6.6.17) is smaller than a. Indeed, it is straightforward to check that

max
 2L′

K1/2
1

,
16D( f (xK1) − inf f )

K1/2
1

,

√
128DL′

K1/2
1

 ≤ a
2
.

Thus, the proof will follow if

16DL′
√

2 log(2K2
1/p)

K1/2
1

≤
a
2
. (6.6.18)

We perform this calculation in Appendix 7.3.7. Thus, the proof is complete. □
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6.6.3.3 Local oracle complexity.

Thus, we have established a local nearly linear convergence rate for NTDescent. To

understand the overall complexity of the method, we must derive an upper bound on the

contraction factor q. The following lemma, which is proved in Appendix 7.3.8, provides

one that depends on a worst-case condition number of f .

Lemma 6.6.6. Suppose without loss of generality that δA ≤ 1. Define the condition

number

κ =
max{L, β,C(a)}

min{γ, µ}
.

Then there exists a universal constant η > 0 independent of f such that

q ≤ 1 −
η

κ8(1 +CM)2 .

where q is defined as in Table 6.3.

With this upper bound on q, it is straightforward to derive a local complexity estimate

for NTDescent: the method locally produces a point x̂ satisfying f (x̂) − f (x̄) ≤ ε with

at most

O
((
κ8(1 +CM)2 log(1/ε)

)3)
,

first-order oracle evaluations. This bound may be pessimistic since we did not attempt

to optimize the constants Ci or ai. We leave the improvement of this complexity as an

intriguing open question.

Before moving to a brief numerical illustration, we explain how Theorem 6.1.1 from

the introduction follows from the above results.

Remark 2 (Establishing Theorem 6.1.1). Theorem 6.1.1 from the introduction imme-

diately follows from Theorems 6.6.3 and 6.6.5. Indeed, first the event Ek0,q,C from The-

orems 6.6.3 and 6.6.5 contains the corresponding event Ek0,q,C from Theorem 6.1.1 for
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particular q and C, which depend solely on f . Second, from the statement of theorems,

we see that the neighborhood of local nearly linear convergence, BδNTD(x̄), depends solely

on f .

6.7 Numerical illustration

In this section, we briefly illustrate the numerical performance of NTDescent on

two nonsmooth objective functions, borrowed from [123–126]. In both experiments,

we compare NTDescent to the subgradient method with the popular Polyak stepsize

(PolyakSGM) [97], which iterates

xk+1 = xk −
f (xk) − inf f
∥wk∥

2 wk for some wk ∈ ∂c f (xk).

In the first example, inf f is known, in the second, we estimate inf f from multiple

runs of NTDescent. We compare against the subgradient method because it is a simple

first-order method with strong convergence guarantees in convex [97] and nonconvex

settings [115]. Importantly, PolyakSGM accesses the objective solely through function

and subgradient evaluations. Thus, we compare the accuracy achieved by PolyakSGM

and NTDescent after a fixed number of oracle calls, i.e., evaluations of ∂c f .

Let us comment on the implementation of NTDescent. First, in all experiments,

unless otherwise noted, we do not tune parameters of NTDescent. Instead, we simply

choose scaling constant c0 = 10−6 and loop size parameters

Tk = k + 1 and Gk = min{k + 1, ⌈log2(10−16)⌉} for all k ≥ 0.

Second, we attempt to save first-order oracle calls by breaking the loop on Lines 2

through 6 of Algorithm 3 whenever we find that σi > ∥vi+1∥/s. Since σi is increasing

in i and ∥vi+1∥ is nonincreasing in i, this does not affect the iterates xk of NTDescent;
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see Lemma 6.2.1. Finally, in all problems, we initialize NTDescent and PolyakSGM at

a random vector az where z is sampled from the uniform distribution on the unit sphere.

For all problems, we use a = 1 unless otherwise noted. Note that in the problems of

Section 6.7.1 and 6.7.2, the solution is known, while in the problem of Section 6.7.3,

the solution is unknown.

The purpose of this section is not to argue that NTDescent is a substitute for

standard subgradient methods in most problems. Instead, we only wish to point out

some scenarios where standard first-order methods are known to perform poorly, yet

NTDescent asymptotically accelerates. We are also not arguing that NTDescent has

fast global rates: indeed, we previously mentioned that the NTDescent’s global rate is

O(ϵ−6) which is much worse than PolyakSGM’s O(ϵ−2) rate for general convex prob-

lems. In practice, one could devise schemes that couple NTDescent with PolyakSGM,

eventually switching to NTDescent when it begins to outperform PolyakSGM. While

we leave a more thorough numerical study to future work, the reader may down-

load and run our PyTorch [127] implementation of NTDescent at the following url:

https://github.com/COR-OPT/ntd.py

We now turn to the examples.

6.7.1 A max-of-smooth function

In this example, f takes the following form

f (x) = max
i=1,...,m

{
g⊤i x +

1
2

xT Hix
}
, (6.7.1)

where we generate a random vector λ ∈ Rm in {λ > 0:
∑m

i=1 λi = 0}, a random positive

semi-definite matrix Hi, and a random vector gi satisfying that
∑m

i=1 λigi = 0. In this case,
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one can show that with probability 1, f satisfies Assumption Q at its unique minimizer

0.

0 200000 400000 600000
Cumulative oracle calls

10−11

10−9

10−7

10−5

10−3

10−1

f
(x
∗ t)
−
f
∗

d = 25, m = 5

d = 25, m = 10

d = 25, m = 15

NTDescent

PolyakSGM

(a)

0 10000 20000 30000 40000
Cumulative oracle calls

10−11

10−9

10−7

10−5

10−3

10−1

f
(x
∗ t)
−
f
∗

d = 10, m = 5

d = 100, m = 5

d = 1000, m = 5

NTDescent

PolyakSGM

(b)

0 20000 40000 60000
Cumulative oracle calls

10−11

10−9

10−7

10−5

10−3

10−1

101

103

f
(x
∗ t)
−
f
∗

d = 100, m = 5, scale = 1.0

d = 100, m = 5, scale = 10.0

d = 100, m = 5, scale = 100.0

NTDescent

PolyakSGM

(c)

0 20000 40000 60000
Cumulative oracle calls

10−11

10−8

10−5

10−2

101

104

f
(x
∗ t)
−
f
∗

d = 10, m = 5, scale = 100

d = 100, m = 5, scale = 100

d = 1000, m = 5, scale = 100

NTDescent

PolyakSGM

(d)

0 200000 400000 600000
Cumulative oracle calls

10−11

10−9

10−7

10−5

10−3

10−1

f
(x
∗ t)
−
f
∗

d = 25, m = 15, c0 = 1.0E-06

d = 25, m = 15, c0 = 1.0E-04

d = 25, m = 15, c0 = 1.0E-02

d = 25, m = 15, c0 = 1.0E+00

d = 25, m = 15, c0 = 1.0E+01

NTDescent

(e)

0 10000 20000 30000 40000
Cumulative oracle calls

10−11

10−9

10−7

10−5

10−3

10−1

f
(x
∗ t)
−
f
∗

d = 100, m = 5, c0 = 1.0E-06

d = 100, m = 5, c0 = 1.0E-04

d = 100, m = 5, c0 = 1.0E-02

d = 100, m = 5, c0 = 1.0E+00

d = 100, m = 5, c0 = 1.0E+01

NTDescent

(f)

Figure 6.6: Comparison of NTDescent with PolyakSGM on (6.7.1). For both algo-
rithms, the value f (x∗t ) denotes the best function seen after t oracle evaluations. See text
for description.

In Figure 6.6 we plot the performance of NTDescent and PolyakSGM for multiple
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pairs of (d,m), varying initialization scale, a slight modification of NTDescent that

allows longer steps, and varying scales c0. We begin with Figure 6.6a and Figure 6.6b.

Figure 6.6a shows that the performance of NTDescent depends on m. On the other

hand, Figure 6.6b shows NTDescent performance is independent of d, as expected.

Both plots show that NTDescent asymptotically outperforms PolyakSGM. Turning to

initialization, Figure 6.6c shows the result of initializing NTDescent at a random vector

az, where z is uniformly drawn from the sphere and a is a scale parameter satisfying

a ∈ {1, 10, 100}. Clearly, NTDescent is affected by the initialization scale but surpasses

PolyakSGM after 30000 oracle calls. While we expect NTDescent to converge slowly

when far from minimizers, we introduce a simple strategy to mitigate this behavior.

Adaptive grid strategy. Briefly, suppose we run linesearch the full G steps without

exiting (via the violation of the trust region constraint). Then we simply continue the

linesearch loop trying σ−1 = 10σ0, σ−2 = 10σ−1, and so on, until we violate the trust

region constraint or σ−i exceeds a predefined threshold.

Figure 6.6d shows the result of this strategy with a predefined threshold∞, showing

that it compensates for poor initialization quality. Finally in Figure 6.6e and 6.6f, we

show the effect of changing the c0 input to NTDescent. It appears NTDescent is rela-

tively insensitive to c0, and smaller choices generally result in better performance. This

motivates our default choice c0 = 10−6 in the remainder of the experiments.

Before turning to our second experiment, we briefly mention two alternative methods

– Prox-linear [66, 128–131] and Survey Descent [104] – which could be applied to this

problem. In order to explain these algorithms, let us write f = maxi=1,...,m{ fi}, where the

fi are the quadratic function from (6.7.1).
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Prox-linear method. Given a point x ∈ Rd, the Prox-linear update x+ solves

x+ = argmin
y∈Rd

max
i=1,...,m

{ fi(x) + ⟨∇ fi(x), y − x⟩} +
ρ

2
∥y − x∥2.

One may show that x+ geometrically improves on x; see [132]. However, in contrast to

NTDescent, the prox-linear method requires that the components fi are known. This is

stronger than the first-order oracle model considered in this chapter. Thus, we do not

compare NTDescent with prox-linear.

Survey Descent. The Survey Descent method is a multi-point generalization of gra-

dient descent designed for max-of-smooth functions. Rather than maintaining a single

iterate sequence, the Survey Descent maintains a survey S of points, meaning a collec-

tion of points {si}
m
i=1 at which f is differentiable. A single iteration of the Survey Descent

method then aims to produce a new survey S + = {s+i }
m
i=1 satisfying

s+i := argmin
x∈Rd

∥∥∥∥∥x −
(
si −

1
L
∇ f (si)

)∥∥∥∥∥2

subject to: f (s j) + ⟨∇ f (s j), x − s j⟩ +
L
2
∥x − s j∥

2 ≤ f (si) + ⟨∇ f (si), x − si⟩ ∀ j , i.

Here, L is an upper bound on the Lipschitz constant of ∇ fi for all i = 1, . . . ,m. In [104],

Han and Lewis study linear convergence of Survey Descent on max-of-smooth functions

under the conditions of Corollary 6.3.4. Given a survey S , they show that the updated

survey S + geometrically improves on S (in an appropriate sense) whenever the following

conditions are satisfied: (i) all elements of the survey S are near x̄; (i) the survey S is

valid, meaning there exists a permutation a on [m] such that

fa(i)(si) = f (si) and ∂c f (si) = {∇ fa(i)(si)} for all i = 1, . . . ,m.

To estimate the number of components m and find a valid initial survey S sufficiently

close to x̄, Han and Lewis suggest an empirical procedure based on running a nons-

mooth variant of BFGS [124] for several iterations. After running BFGS, they suggest
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(i) computing an estimate m̂ of m from a singular value decomposition of the computed

gradients and (ii) building the survey from m̂ past iterates in such a way that the com-

puted gradients form an affine independent set. From the numerical illustration in [104],

Survey Descent performs well on several small problems. However, since the initializa-

tion procedure and implementation of Survey Descent are somewhat sophisticated, we

leave a detailed comparison between NTDescent and Survey Descent for future work.

6.7.2 A matrix sensing problem

In this example, f takes the following form

f (X) =
1
n
∥A(XXT ) −A(M⋆)∥1,

where M⋆ ∈ R
N×N is an unknown positive semidefinite matrix of rank r⋆ that we wish

to recover from known linear measurementsA(M⋆); the linear operatorA : RN×N → Rn

takes the form Y 7→ (aT
i Yai − bT

i Ybi)n
i=1, for n ∈ N, where ai, bi ∈ R

d are random vectors

sampled from a standard multivariate normal distribution; and the decision variable is a

tall and skinny matrix X ∈ RN×r, where in general we allow r , r⋆. This optimization

problem appears in various signal processing applications and is known as quadratic

sensing [133]. Note that this objective does not satisfy Assumption Q since the solution

set is not isolated.

We consider two settings in this section: the exact setting r = r⋆ and the overpa-

rameterized setting r > r⋆. In the exact setting [134] showed that if n = Ω(Nr), the

objective f is sharp, meaning f (x) = Ω(dist(x, argmin f )) and that PolyakSGM con-

verges linearly whenever the initial iterate is sufficiently close to the set of minimizers.

In the overparameterized setting, we are not aware of similar guarantees since exisiting

works with nonsmooth loss [135,136] all require Gaussian sensing matrices. In practice,
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r⋆ is unknown, so the overparameterized setting will likely be encountered.

In Figure 6.7, we plot the performance of NTDescent and PolyakSGM in two ex-

periments. In Figure 6.7a we use base dimensions N = 100, optimal rank r⋆ = 5, and

varying overparameterization r ∈ {r⋆, r⋆ + 2, r⋆ + 5}. In Figure 6.7b we use base dimen-

sions N = 100, varying optimal rank r⋆ ∈ {5, 10, 15}, and fixed overparameterization

r = r⋆ + 5. In both experiments, we fix n = 4Nr⋆. Note that the dimension of the deci-

sion variable X varies across each run since d = Nr and r vary. As can be seen from the

plot, PolyakSGM outperforms NTDescent in the exact setting. This is expected since f

is a sharp function on which PolyakSGM is known to perform well. On the other hand,

when r > r⋆, we find that both methods slow down. However, NTDescent converges

nearly linearly, while PolyakSGM converges sublinearly. To the best of our knowledge,

white-box algorithms based on preconditioning idea [137, 138] have a local linear con-

vergence rate. However, all black-box algorithms in overparametrized settings rely on

small initialization and early stopping to achieve linear rate [136, 139–144].
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Figure 6.7: Comparison of NTDescent with PolyakSGM on (6.7.1). In both plots, the
base dimension is N = 100. Left: fixed optimal rank r⋆ = 5 and varying overparam-
eterization r ∈ {5, 7, 10}; Right: varying r⋆ ∈ {5, 10, 15}, fixed overparameterization
r = r⋆ + 5. For both algorithms, the value f (x∗t ) denotes the best function seen after t
oracle evaluations.
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6.7.3 An eigenvalue product function

In this example, we aim to optimize a function f̃ that takes the following form

f̃ (X) = log EK(A ⊙ X),

where A is a fixed positive semi-definite data matrix, EK(Y) denotes the product of K

largest eigenvalues of a symmetric matrix Y ∈ SN , and ⊙ denotes the Hadamard (en-

trywise) matrix product, subject to the constraint that X is positive semi-definite and its

diagonal entries are 1. This example is a nonconvex relaxation of an entropy minimiza-

tion problem arising in an environmental application [125,126]. In our experiments, we

choose A as in [126]: A is the leading N × N submatrix of a 63 × 63 covariance matrix,

scaled so that the largest entry is 1. As suggested by [125], we reformulate this problem

as an unconstrained optimization problem using a Burer-Monteiro type factorization

min
V∈RN×N

f (V) = f̃ (c(V)c(V)⊤), (6.7.2)

where c : RN×N → SN satisfies c(V) = Diag([diag(VV⊤)]−1/2)V for all V ∈ RN×N . Here,

the mapping diag(·) takes a matrix an N × N matrix A to the N dimensional vector with

ith entry Aii. On the other hand, the mapping Diag(·) takes an N dimensional vector v to

the N ×N diagonal matrix with ith diagonal entry vi. A formula for the subgradient of f

may be found [125]. We do not attempt to verify that f satisfies the full Assumption Q.

Instead, we point out that under a “transversality condition,” function f admits an active

manifold at local minimizers [124].

Turning to the experiment, we consider the case where N = 14 and K = 7. In

this example, the optimal function value inf f is not known. Thus, we run NTDescent

from four random initial starting points. We terminate each run of NTDescent when a

certain “optimality gap” Rk satisfies Rk ≤ 10−12. We denote the minimal function value

achieved across all four runs by f ∗. Let us now define and motivate the optimality gap.
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For iteration k in Algorithm 4, define

Rk := min
{
max{σ(k)

i , ∥v
(k)
i+1∥

2} : σ(k)
i ≤ ∥v

(k)
i+1∥

}
,

where σ(k)
i and v(k)

i+1 are computed in Lines 2 through 6 of Algorithm 3 at iteration k. Pro-

vided that xk is sufficiently close to a point x̄ at which function f satisfies Assumption Q,

it is possible to show that Rk satisfies f (xk)− f (x̄) ≲ Rk. This is illustrated in Figure 6.8a:

there, the optimality gap closely tracks the estimated function gap, when approximating

by inf f by f ∗. In Figure 6.8b, we compare the performance of NTDescent on the three

runs which did not achieve function value f ∗ before termination. In all three cases, we

see similar performance. Next, for each run of NTDescent, we also run PolyakSGM

from the same initial starting point, estimating inf f by f ∗. We see that NTDescent

outperforms PolyakSGM.
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Figure 6.8: Numerical performance on (6.7.2). Left: the close relationship between the
“optimality gap” and function gap; Right: comparison of PolyakSGM and NTDescent
from three initial starting points. For both algorithms, the value f (x∗t ) denotes the best
function seen after t oracle evaluations. See text for details.
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CHAPTER 7

APPENDICES

7.1 Proofs for saddle avoidance

7.1.1 Proof of Proposition 3.3.4

Since X is a C3 manifold, the projection PY is C2-smooth. Therefore, there exist con-

stants ϵ, L > 0 satisfying

∥PY(y + h) − PY(y) − ∇PY(y)h∥ ≤ L∥h∥2 (7.1.1)

for all y ∈ Bϵ(x̄) and h ∈ ϵB. Fix now two points x ∈ X and y ∈ Y and a unit vector

v ∈ NX(x). Clearly, we may suppose v < NY(y), since otherwise the claim is trivially

true. Define the normalized vector w := − PTY (y)(v)
∥PTY (y)(v)∥ . Noting the equality ∇PY(y) = PTY (y)

and appealing to (7.1.1), we deduce the estimate

∥PY(y − αw) − (y − αw)∥ ≤ L∥αw∥2 = Lα2,

for all y ∈ Bϵ(x̄) and α ∈ (0, ϵ). Shrinking ϵ > 0, prox-regularity yields the estimate

⟨v, PY(y − αw) − x⟩ ≤
ρ

2
∥x − PY(y − αw)∥2,

for some constant ρ > 0. Therefore, we conclude

α∥PTY (y)v∥ = −α ⟨v,w⟩ = ⟨v, x − y⟩ + ⟨v, PY(y − αw) − x⟩ + ⟨v, (y − αw) − PY(y − αw)⟩

≤ ∥x − y∥ +
ρ

2
∥x − PY(x − αw)∥2 + Lα2.

Note that the middle term is small:

∥PY(y−αw)− x∥2 ≤ 2∥PY(y−αw)− (y−αw)∥2+2∥y−αw− x∥2 ≤ 2L2α4+4∥y− x∥2+4α2.
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Thus, we have

α∥PTY (y)v∥ ≤ ∥x − y∥ + ρL2α4 + 2ρ∥x − y∥2 + 2ρα2 + Lα2.

Dividing both sides by α and setting α =
√
∥x − y∥ completes the proof of (3.3.1).

7.1.2 Proof of Proposition 4.2.3: the projected gradient method

Choose ϵ > 0 small enough that the following hold for all x ∈ Bϵ(x̄) ∩ X. First (4.2.9)

holds. Second we require that for some L > 0, we have

∥PTM(PM(x))(sg(x) − ∇Mg(PM(x))∥ ≤ Ldist(x,M), (7.1.2)

∥PTM(z)(u)∥ ≤ L∥x − z∥, (7.1.3)

for all u ∈ NX(x) of unit norm and all z ∈ Bϵ(x̄) ∩ M, a consequence of (C1). Third,

given an arbitrary δ ∈ (0, 1) we may choose ϵ > 0 so small so that

⟨z, x − x′⟩ ≥ −o(∥x − x′∥) (7.1.4)

for all z ∈ NX(x) of unit norm, and x′ ∈ M ∩ Bϵ(x̄)—a consequence of (C3). We will

fix x ∈ Bϵ/2(x̄) ∩ X and arbitrary α > 0 and ν ∈ Rd, and choose an arbitrary y ∈ PM(x).

Define

w = Gα(x, ν) − ν − sg(x) and x+ = sX(x − α(sg(x) + ν)).

Note the inclusion w ∈ NX(x+). Next, to verify (A1), we compute

α∥Gα(x, ν)∥ = ∥x − sX(x − α(sg(x) + ν))∥

≤ distX(x − α(sg(x) + ν)) + α∥sg(x) + ν∥

≤ 2α∥sg(x) + ν∥ = O(α(1 + ∥ν∥)).
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Thus there exists a constant C > 0 satisfying

max{∥w∥, ∥Gα(x, ν)∥} ≤ C(1 + ∥ν∥) and ∥x+ − x∥ ≤ C(1 + ∥ν∥)α.

We will use these estimates often in the proof. Finally, we let C be a constant indepen-

dent of x, α and ν, which changes from line to line.

Assumption (A2): Suppose first that x+ ∈ Bϵ(x̄). Using (7.1.3), we compute

∥PTM(PM(x))w∥ ≤ L∥w∥∥x+ − PM(x)∥

≤ L∥w∥(∥x+ − x∥ + dist(x,M))

≤ C(1 + ∥ν∥)2α +C(1 + ∥ν∥)dist(x,M). (7.1.5)

On the other hand, if x+ < Bϵ(x̄), then we compute

∥PTM(PM(x))w∥ ≤ ∥w∥ ≤
2
ϵ
∥w∥∥x+ − x∥ ≤ C(1 + ∥ν∥)2α. (7.1.6)

In either case, Assumption (A2) now follows since from (7.1.2) we have

∥PTM(PM(x))(sg(x) − ∇Mg(PM(x))∥ ≤ Cdist(x,M),

as we had to show.

Assumption (A3): We write the decomposition

⟨Gα(x, ν) − ν, x − y⟩ = ⟨sg(x), x − y⟩︸         ︷︷         ︸
R1

+ ⟨w, x+ − y⟩︸       ︷︷       ︸
R2

+ ⟨w, x − x+⟩︸       ︷︷       ︸
R3

. (7.1.7)

The aiming condition (C2) ensures

R1 ≥ µ · dist(x,M). (7.1.8)

We next look at two cases. Suppose first x+ ∈ Bϵ(x̄) and therefore ∥x+ − x∥ ≥ ϵ/2. Using

the inclusion w ∈ NX(x+) and Assumption (C3), we compute

R2 ≥ −∥w∥ · o(∥x+ − y∥) ≥ −∥w∥ · (o(∥y − x∥) + ∥x − x+∥)
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≥ −C(1 + ∥ν∥)2(o(dist(x,M)) + α). (7.1.9)

Next, the Cauchy–Schwarz inequality implies

|R3| = ∥w∥∥x − x+∥ ≤ C(α(1 + ∥ν∥)2). (7.1.10)

Combining (7.1.7)-(7.1.10) yields the claimed bound (A3).

Suppose now on the contrary that x+ < Bϵ(x̄) and therefore ∥x − y∥ ≤ ∥x − x+∥. We

thus deduce R2 +R3 = ⟨w, x− y⟩ ≥ −∥w∥∥x− y∥ ≥ −Cα(1+ ∥ν∥)2 holds. Combining this

estimate with (7.1.7) and (7.1.8) verifies the claim (A3).

7.1.3 Proof of Proposition 4.2.5: the proximal gradient method

Let ϵ ∈ (0, 1) be small enough such that the following hold for all x ∈ Bϵ(x̄) ∩ dom f .

First, (4.2.13) holds and therefore:

⟨∇g(x) + v, x − PM(x)⟩ ≥ µ · dist(x,M) − (1 + ∥v∥)o(dist(x,M)), (7.1.11)

for all v ∈ ∂̂h(x). Second we require that for some L > 0, we have

∥PTM(PM(x))(u − ∇Mh(PM(x))∥ ≤ L
√

1 + ∥u∥2 · dist(x,M) (7.1.12)

for all u ∈ ∂h(x), a consequence of strong (a) regularity. Third, we assume that ∇M f is

L-Lipschitz on Bϵ(x̄) ∩M. Fourth, we assume that ∇g(·) is L-Lipschitz. Shrinking ϵ we

may moreover assume ϵ ≤ µ

4L . Finally, we may also assume that the assignments PM

is L-Lipschitz on Bϵ(x̄) and that the map x 7→ PTM(PM(x))(·) is L-Lipschitz on Bϵ(x̄) with

respect to the operator norm.

Fix x ∈ Bϵ/2(x̄) ∩ dom f and ν ∈ Rd and set y := PM(x). We define the vectors

w = Gα(x, ν) − ∇g(x) − ν and x+ = sα(x − α(∇g(x) + ν)).
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Claim: We have w ∈ ∂̂h(x+) and there exists a constant C independent of x, ν, α, such

that the following bounds hold:

max{∥Gα(x, ν)∥, ∥w∥} ≤ C(1 + ∥ν∥); and ∥x+ − x∥ ≤ C(1 + ∥ν∥)α.

Proof. Beginning with the inclusion, first-order optimality conditions imply that w is a

Fréchet subgradient:

w =
x − α(∇g(x) + ν) − x+

α
∈ ∂̂h(x+),

as desired. First, we bound ∥x+ − x∥: Let v = ∇g(x) + ν and observe from the very

definition of x+ that there exists C > 0 such that

1
2α
∥x+ − x∥2 ≤ h(x) − h(x+) − ⟨v, x+ − x⟩ ≤ C∥x+ − x∥ + ∥v∥∥x+ − x∥.

Consequently, we have ∥x+ − x∥ ≤ (2C + 2∥v∥)α ≤ 2(2C + ∥ν∥)α, as desired. Second, the

bound on Gα(x, ν) follows trivially from the computation

∥Gα(x, ν)∥ = ∥x+ − x∥/α ≤ 2(2C + ∥ν∥).

Finally, we bound ∥w∥ using the estimate

∥w∥ = ∥x − x+∥/α + ∥∇g(x) + ν∥ ≤ 4(2C + ∥ν∥),

as desired. □

We will use the estimates in the claim often in the proof. Finally, we let C be a

constant independent of x, α and ν, which changes from line to line.

Assumption (A2): First suppose x+ ∈ Bϵ(x̄). Using the triangle inequality, we write

∥PTM(PM(x))(Gα(x, ν) − ∇M f (PM(x)) − ν)∥

= ∥PTM(PM(x))(w + ∇g(x) − ∇g(PM(x)) − ∇Mh(PM(x)))∥
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≤ ∥PTM(PM(x))(w − ∇Mh(PM(x+)))∥︸                                    ︷︷                                    ︸
R1

+ ∥∇g(x) − ∇g(PM(x))∥︸                     ︷︷                     ︸
R2

+ ∥∇Mh(PM(x))) − ∇Mh(PM(x+)))∥︸                                      ︷︷                                      ︸
R3

.

Taking into account that the assignment x 7→ PTM(PM(x))(·) is Lipschitz with respect to

the operator norm, the estimate (7.1.12) implies

R1 ≤ L
√

1 + ∥w∥2 · dist(x+,M) + L∥x − x+∥∥w − ∇Mh(PM(x+))∥

≤ C(1 + ∥ν∥)dist(x+,M) + L(1 + ∥ν∥)2α

≤ C(1 + ∥ν∥)(dist(x,M) +C∥x − x+∥) + L(1 + ∥ν∥)2α

≤ C(1 + ∥ν∥)dist(x,M) +C(1 + ∥ν∥)2α.

Moreover, clearly we have R2 ≤ Cdist(x,M) and R3 ≤ C∥x − x+∥ ≤ (1 + ∥ν∥)α. Condi-

tion (A2) follows immediately.

Now suppose that x+ < Bϵ(x̄), and therefore ∥x+ − x∥ ≥ ϵ/2. Then, we may write

∥PTM(PM(x))(Gα(x, ν) − ν − ∇ fM(PM(x)))∥ ≤ ∥Gα(x, ν)∥ + ∥ν∥ + ∥∇ fM(PM(x))∥

≤
2
ϵ

(∥Gα(x, ν)∥ + ∥ν∥ + ∥∇ fM(PM(x))∥)∥x − x+∥

≤ C(1 + ∥ν∥)2α,

as desired.

Assumption (A3): We begin with the decomposition

⟨Gα(x, ν) − ν, x − y⟩ = ⟨∇g(x+) + w, x+ − PM(x+)⟩︸                             ︷︷                             ︸
R1

+ ⟨∇g(x) − ∇g(x+), x − y⟩︸                        ︷︷                        ︸
R2

+ ⟨∇g(x+) + w, (x − PM(x)) − (x+ − PM(x+))⟩︸                                                    ︷︷                                                    ︸
R3

.

We now bound the two terms on the right in the case x+ ∈ Bϵ(x̄). Using (3.1.10), we

estimate

R1 ≥ µ · dist(x+,M) − (1 + ∥v∥)o(dist(x+,M))
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≥ µ · (dist(x,M) − ∥x − x+∥) − (1 + ∥v∥)(o(dist(x,M)) + ∥x − x+∥)

≥ µ · dist(x,M) − (1 + ∥ν∥)2(o(dist(x,M)) +Cα).

Next, we compute

|R2| ≤ ∥∇g(x) − ∇g(x+)∥ · dist(x,M) ≤ 2Lϵ · dist(x,M) ≤
µ

2
dist(x,M).

Next using Lipschitz continuity of the map I − PM on Bϵ(x̄), we deduce

|R3| ≤ (1 + L)∥∇g(x+) + w∥ · ∥x − x+∥ ≤ C(1 + ∥ν∥)2α.

The claimed proximal aiming condition follows immediately.

Let us look now at the case x+ < Bϵ(x̄), and therefore dist(x,M) ≤ ϵ
2 ≤ ∥x − x+∥.

Then we compute

⟨Gα(x, ν) − ν, x − PM(x)⟩ ≥ −dist(x,M) · ∥Gα(x, ν) − ν∥

= dist(x,M) − dist(x,M)(1 + ∥Gα(x, ν) − ν∥)

≥ dist(x,M) −C∥x − x+∥(1 +C(1 + ∥ν∥))

≥ dist(x,M) −C(1 + ∥ν∥)2α,

as desired. The proof is complete.

7.1.4 Proof of Corollary 4.4.3: avoiding active strict saddle via pro-

jected subgradient method

By Proposition 4.2.3 we need only show that Assumption C holds. To that end, note

that Assumptions(C1) and (C3) hold by assumption. Next we prove (C2). Note that

if g satisfies (b≤) alongM, then (C2) holds by Corollary 3.1.5. Next, suppose that g is
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weakly convex around x. In this case, since each x ∈ S is Fréchet critical andMx is an

active manifold, it follows by Proposition 2.4.2 that for some µ > 0, we have

g(y) − g(PMx(y)) ≥ µdist(y,M),

near x. Consequently, for all v ∈ ∂cg(x), we have

⟨v, y − PMx(y)⟩ ≥ g(y) − g(PMx(y)) − O(∥x − y∥2) ≥ (µ/2)dist(x,M),

for all y near x, verifying (C2).

7.1.5 Proof of Corollary 4.4.4: avoiding active strict saddle via

proximal gradient method

By Proposition 4.2.5, we need only show that Assumption D holds. Note that (D1), (D2),

and (D3) hold by assumption. Thus, we need only verify (D4), which is immediate from

(b≤)-regularity and Corollary 3.1.5.

7.1.6 Proofs of Corollaries 4.4.5, 4.4.6, and 4.4.7: saddle point

avoidance for generic semialgebraic problems.

We first claim that the collection of limit points for all three methods is a connected set

of composite Clarke critical points. To that end, note that by [77, Theorem 6.2/Corollary

6.4], we know that for each method, on the event the sequence xk is bounded, all limit

points are composite Clarke critical. We claim that the set of limit points is in fact

connected. Indeed, by [145, Lemma 5(iii)], this will follow if

lim
k→0
∥xk+1 − xk∥ = lim

k→0
∥αkGαk(xk, νk)∥ = 0.
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This in turn follows from [77, Lemma A.4, A.5, and A.6], which shows that Gαk(xk, νk) =

wk + ξk, where wk is bounded and
∑∞

k=1 αkξk exists almost surely. Consequently, we have

∥αkGαk(xk, νk)∥ = αk∥wk + ξk∥ → 0 almost surely, as desired.

Next we claim that the sequence xk converges for all three methods. Indeed, by

Corollaries 4.2.2, 4.2.4, and 4.2.6, it follows that each of the set of composite Clarke

critical points for all three problems is finite for generic semialgebraic problems. There-

fore, since the set of limit points of xk is connected and discrete, it follows that on the

event the sequence xk is bounded, it must converge to a composite Clarke critical point.

To wrap up the proof, suppose that xk converges to a composite limiting critical

point. Then by Corollaries 4.2.2, 4.2.4, and 4.2.6 for any of the three methods, every

composite limiting critical point of f is a composite Fréchet critical point which is either

a local minimizer or an active strict saddle point at which Assumption A holds along the

active manifold. By Theorem 4.4.2, the sequence xk can converge to the such active

strict saddle points only with probability zero. Therefore, the limit point must be a local

minimizer, as desired.

7.1.7 Sequences and Stochastic Processes

7.1.7.1 Lemmas from other works.

Lemma 7.1.1 (Robbins-Siegmund [146]). Let Ak, Bk,Ck,Dk ≥ 0 be non-negative ran-

dom variables adapted to the filtration {Fk} and satisfying

E[Ak+1 | Fk] ≤ (1 + Bk)Ak +Ck − Dk.

Then on the event {
∑

k Bk < ∞,
∑

k Ck < ∞}, there is a random variable A∞ < ∞ such

that Ak
a.s.
−−→ A∞ and

∑
k Dk < ∞ almost surely.
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Lemma 7.1.2 (Conditional Borel-Cantelli [147]). Let {Xn : n ≥ 1} be a sequence of

nonnegative random variables defined on the probability space (Ω,F ,P) and {Fn : n ≥

0} be a sequence of sub-σ-algebras of F . Let Mn = E [Xn | Fn−1] for n ≥ 1. If {Fn : n ≥

0} is nondecreasing, i.e., it is a filtration, then
∑∞

n=1 Xn < ∞ almost surely on {
∑∞

n=1 Mn <

∞}.

Lemma 7.1.3 ( [80, Theorem A]). Let {Fk} be a filtration and let {ϵk} be a sequence of

random variables adapted to {Fk} satisfying for all k the bound

E[ϵ2
k+1 | Fk] < ∞ and E[ϵk+1 | Fk] = 0.

Let {Φk}k be another sequence of random variables adapted to {Fk}. Let {ck} be a deter-

ministic sequence that is square summable but not summable. Suppose that the following

hold almost surely on an event H:

• We have the Marcinkiewick-Zygmund conditions:

lim sup
k

E[ϵ2
k+1 | Fk] < ∞ and lim inf

k
E[|ϵk+1| | Fk] > 0.

• There exists sequences of random variables {rk} and {Rk}, adapted to {Fk} such

that Φk = rk + Rk and∑
k

∥rk∥
2 < ∞ and E

1H

∞∑
k=K

ck|Rk|

 = o

 ∞∑
k=K

c2
k

1/2 .
Then on H the series

∑∞
k=1 ck(Φk+ϵk) converges almost surely to a finite random variable

L. Moreover, for any p ∈ N and any Fp-measurable random variable Y we have

P(H ∩ (L = Y)) = 0.

Lemma 7.1.4 ( [148, Exercise 5.3.35]). Let Mk be an L2 martingale adapted to a filtra-

tion {Fk} and let bk ↑ ∞ be a positive deterministic sequence. Then if∑
k≥1

b−2
k E

[
(Mk − Mk−1)2 | Fk−1

]
< +∞,
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we have b−1
n Mn

a.s.
−−→ 0.

Lemma 7.1.5 (Kronecker Lemma). Suppose {xk}k is an infinite sequence of real number

such that the sum
∑∞

k=1 xk exists and is finite. Then for any divergent positive nondecreas-

ing sequence {bk}, we have

lim
K→∞

1
bK

K∑
k=1

bkxk = 0.

7.1.7.2 Lemmas used in Chapter 4

We will use the following two Lemmas on sequences. The proof of the following

Lemma may be found in Appendix 7.1.8.

Lemma 7.1.6. Fix k0 ∈ N, c > 0, and γ ∈ (1/2, 1]. Suppose that {Xk}, {Yk}, and {Zk}

are nonnegative random variables adapted to a filtration {Fk}. Suppose the relationship

holds:

E[Xk+1 | Fk] ≤ (1 − ck−γ)Xk − Yk + Zk for all k ≥ k0.

Assume furthermore that c ≥ 6 if γ = 1. Define the constants ak := k2γ−1

log2(k+1)
. Then

there exists a random variable V < ∞ such that on the event {
∑∞

k=1 ak+1Zk < +∞}, the

following is true:

1. The limit holds

akXk
a.s.
−−→ V.

2. The sum is finite
∞∑

k=1

ak+1Yk < +∞.

The proof of the following Lemma may be found in Appendix 7.1.8.1.
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Lemma 7.1.7. Fix k0 ∈ N, c,C > 0, and γ ∈ (1/2, 1]. Suppose that {sk}k is a nonnegative

sequence satisfying

sk ≤
c

12γ
and s2

k+1 ≤ s2
k − ck−γsk +Ck−2γ, for all k ≥ k0,

Then, there exists a constant Cub depending only on c,C, γ and k0 such that

sk ≤ Cubk−γ, ∀k ≥ 1.

The proof of the following Lemma may be found in Appendix 7.1.8.2.

Lemma 7.1.8. Fix k0 ∈ N, c,C > 0, and γ ∈ (1/2, 1]. Suppose that {sk}k is a nonnegative

sequence satisfying

sk+1 ≤ (1 − ck−γ)sk +Ck−2γ, for all k ≥ k0,

Assume furthermore that c ≥ 16 if γ = 1. Then, there exists a constant Cub depending

only on c,C, γ and k0 such that

sk ≤ Cubk−γ, ∀k ≥ 1.

7.1.8 Proof of Lemma 7.1.6

Proof. For all k ≥ 0, define ak := k2γ−1

log(k+1)2 and observe that

E[ak+1Xk+1 | Fk] ≤ ak+1(1 − ck−γ)Xk − ak+1Yk + ak+1Zk for all k ≥ k0.

Thus, the result will follow from Robbins-Siegmund Lemma 7.1.1 if ak+1(1− ck−γ) ≤ ak

for all sufficiently large k. To that end, notice that for sufficiently large k, we have(k + 1
k

)2γ−1

≤ 1 +
2(2γ − 1)

k
.
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Therefore,

ak+1

ak
≤ 1 +

2(2γ − 1)
k

for all sufficiently large k.

Now we deal separately with the cases γ < 1 and γ = 1. First suppose that γ < 1. Then

there exists a constant C′ > 0 such that

1
1 − ck−γ

≥ 1 +
C′

kγ
, for all sufficiently large k.

Consequently, ak+1/ak ≤ (1 − ck−γ)−1 for all sufficiently large k, as desired.

Now assume that γ = 1. Then we compute

1
1 − ck−1 ≥ 1 +

c
2k
, for all sufficiently large k.

Consequently, ak+1/ak ≤ (1 − ck−1)−1 for all large k, provided that c ≥ 6. □

7.1.8.1 Proof of Lemma 7.1.7

Proof. It suffices to exhibit C′ub > 0 such that

sk ≤ C′ubk
−γ for all sufficiently large k ≥ k0.

To that end, choose k1 large enough that the following two bounds hold:

1. C′ub := max
{ ckγ1

12γ , 2
√

C, 4C
c

}
=

ckγ1
12γ

2.
(

k1+1
k1

)2γ
≤ min

{
2, 1 + 3γ

k1

}
.

Then by assumption, we have

k2γs2
k+1 ≤ k2γs2

k − ckγsk +C for all k ≥ k1.
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Denoting tk := kγsk, we obtain the following bound for all k ≥ k1:

t2
k+1 ≤

(k + 1
k

)2γ

(t2
k − ctk +C) ≤

(k1 + 1
k1

)2γ

(t2
k − ctk +C). (7.1.13)

Thus the claim will follow if tk ≤ C′ub for all k ≥ k1. We prove the claim by induction.

First the case k = k1 holds by definition of C′ub. Now suppose tk ≤ C′ub for some k ≥ k1

and consider two cases

First suppose tk ∈ [0, 1
2C′ub]. By (7.1.13) and definition of C′ub, we have

t2
k+1 ≤

(k1 + 1
k1

)2γ

(t2
k +C)

≤

(k1 + 1
k1

)2γ (1
4

C′2ub +
1
4

C′2ub
)

≤ C′2ub.

Second, suppose tk ∈ [1
2C′ub,C

′
ub]. By (7.1.13) and definition of C′ub, we have

t2
k+1 ≤

(k1 + 1
k1

)2γ

(t2
k − ctk +C)

≤

(k1 + 1
k1

)2γ (
C′2ub −

cC′ub
2
+C

)
≤

(k1 + 1
k1

)2γ (
C′2ub −

cC′ub
4

)
= C′ub

(k1 + 1
k1

)2γ (
C′ub −

c
4

)
We claim that

(
k1+1

k1

)2γ (
C′ub −

c
4

)
≤ C′ub. Indeed, we have(k1 + 1

k1

)2γ (
C′ub −

c
4

)
≤

(
1 +

3γ
k1

) (
C′ub −

c
4

)
≤ C′ub +

3γC′ub
k1
−

c
4

≤ C′ub +
c

4k1−γ
1

−
c
4

≤ C′ub,

as desired. This completes the induction. □
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7.1.8.2 Proof of Lemma 7.1.8

Proof. It suffices to exhibit Cub > 0 such that

sk ≤ Cubk−γ for all sufficiently large k ≥ k0.

To that end, choose k1 large enough that the following two bounds hold:

1.
( k+1

k

)γ
≤ 1 + 2γ

k ≤ 2 for all k ≥ k1.

2. k1−γ
1 ≥

16γ
c if γ ∈ ( 1

2 , 1).

Now let tk = skkγ, then we rewrite the above inequality as

tk+1 ≤

(k + 1
k

)γ [
(1 − ck−γ)tk +

C
kγ

]
, for all k ≥ k0. (7.1.14)

Let Cub = max{sk1k
γ
1 , 4C, 8C

c }. By definition of Cub, we know that

tk1 = sk1k
γ
1 ≤ Cub.

For the induction step, we consider two cases.

First suppose tk ∈ [0, 1
4Cub]. By (7.1.14) and definition of Cub, we have

tk+1 ≤

(k0 + 1
k0

)γ
(tk +C)

≤

(k0 + 1
k0

)γ (1
4

Cub +
1
4

Cub
)

≤ Cub.

Second, suppose tk ∈ [ 1
4Cub,k0,x̄,Cub,k0,x̄]. By (7.1.14) and definition of C̃ub,k0,x̄, we

have

tk+1 ≤

(k + 1
k

)γ (
tk −

ctk

kγ
+

C
kγ

)
≤

(k + 1
k

)γ (
Cub −

cCub
4kγ
+

C
kγ

)
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≤

(k + 1
k

)γ (
Cub −

cCub
8kγ

)
= Cub

(k + 1
k

)2γ (
1 −

c
8kγ

)
We claim that

( k+1
k

)γ (1 − c
8kγ

)
≤ 1. Indeed, we have(k + 1

k

)γ (
1 −

c
8kγ

)
≤

(
1 +

2γ
k

) (
1 −

c
8kγ

)
≤ 1 +

2γ
k
−

c
8kγ

When γ = 1, 1 + 2γ
k −

c
8kγ by our assumption on c. When γ ∈ ( 1

2 , 1), 1 + 2γ
k −

c
8kγ ≤ 1 by

our choice of k0. This completes the induction. □

7.2 Proofs for Asymptotic normality and optimality

This supplement contains all the missing proofs justifying the results in Chapter 5. The

supplement proceeds linearly through the sections.

7.2.1 Proof of Theorem 5.3.2

The proof of Theorem 5.3.2 follows from two lemmas. The first allows one to reduce

the sensitivity analysis of the inclusion v ∈ A(x) + ∂ f (x) to an entirely smooth setting.

More precisely, the following basic result, proved in [149, Proposition 10.12], shows

that as soon as f admits an active manifold, the graph of the subdifferential ∂ f admits a

smooth description.

Lemma 7.2.1 (Smooth reduction). Let f be a subdifferentially continuous function that
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admits a C2 active manifoldM at a point x̄ for a vector w̄ ∈ ∂̂ f (x̄). Then equality holds:

gph ∂ f = gph ∂( f + δM) locally around (x̄, w̄).

Note that letting f̂ be a C2-smooth function that agrees with f on M near x̄, we may

write

∂( f + δM)(x) = ∂( f̂ + δM)(x) = ∇ f̂ (x) + NM(x).

Thus, under the same assumptions as in Lemma 7.2.1, equality :

gph ∂ f = gph (∇ f̂ + NM) holds locally around (x̄, w̄).

It follows from the lemma, that we may now focus on variational inclusions of the form

v ∈ Φ(x) + NM(x), where Φ andM are smooth. Perturbation theory of such inclusions

is entirely classical and is summarized in the following lemma.

Lemma 7.2.2 (Smooth variational inequality). Consider a set-valued map

F(x) = Φ(x) + NM(x) (7.2.1)

and the let x̄ be a point satisfying 0 ∈ F(x̄). Suppose that Φ : Rd → Rd is a Cp-smooth

map andM ⊂ Rd is a Cp+1-smooth manifold around x̄. Let G(x) = 0 be any Cp+1-smooth

local defining equations forM and define the map

H(x, y) = Φ(x) + ∇G(x)⊤y.

Then there exists a unique vector ȳ satisfying the condition 0 = H(x̄, ȳ). Moreover, F

is Cp-invertible around (0, x̄) with inverse σ(·) if and only if PTM(x̄)∇xH(x̄, ȳ)PTM(x̄) is

nonsingular on TM(x̄). In this case, equality holds:

∇σ(0) = (PTM(x̄)∇xH(x̄, ȳ)PTM(x̄))†.
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Proof. The existence of ȳ follows from the expression NM(x̄) = range(∇G(x̄)⊤), while

uniqueness follows from surjectivity of ∇G(x̄).

We first prove the backward implication and derive the claimed expression for the

Jacobian. Suppose that PTM(x̄)∇xH(x̄, ȳ)PTM(x̄) is indeed nonsingular on TM(x̄). Then

there exists ϵ > 0 such that for any v ∈ ϵB and x ∈ Bϵ(x̄), the inclusion v ∈ Φ(x)+NM(x)

holds if and only if there exists y satisfying
v = Φ(x) + ∇G(x)⊤y

0 = G(x)

 . (7.2.2)

Treating the right-hand-side as a mapping of (x, y), its Jacobian at (x̄, ȳ) is given by∇xH(x̄, ȳ) ∇G(x̄)⊤

∇G(x̄) 0

 . (7.2.3)

A quick computation shows that this matrix is invertible since PTM(x̄)∇xH(x̄, ȳ)PTM(x̄)

is nonsingular on TM(x̄). Therefore, the inverse function theorem ensures that for all

small v, the system (7.2.3) admits a unique solution σ(v) near x̄, and which varies

Cp smoothly in v. Inverting (7.2.3) yields the expression for the Jacobian ∇σ(0) =

(PTM(x̄)∇xH(x̄, ȳ)PTM(x̄))†.

Conversely, suppose that F is Cp-smoothly invertible around (0, x̄) with inverse σ(·).

Fix a vector v ∈ Rd. Then for all sufficiently small t > 0 there exists a unique vector

y(t) ∈ Rd satisfying

tv = Φ(σ(tv)) + ∇G(σ(tv))⊤y(t).

Subtracting the equation 0 = Φ(x̄) + ∇G(x̄)⊤ȳ and projecting both sides to PTM(x̄) yields

PTM(x̄)v = PTM(x̄)

[
Φ(σ(tv)) − Φ(x̄)

t

]
+ PTM(x̄)

[
∇G(σ(tv))⊤

t
y(t)

]
.

It is straightforward to see that y(t) is continuous, and therefore the right-side tends to

PTM(x̄)∇xH(x̄, ȳ)∇σ(0)v as t tends to zero. Summarizing, since v is arbitrary, we have
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shown the matrix identity

PTM(x̄) = PTM(x̄)∇xH(x̄, ȳ)∇σ(0).

Taking into account that the range of ∇σ(0) is contained in TM(x̄), it follows

that the range of PTM(x̄)∇xH(x̄, ȳ)PTM(x̄) must be equal to TM(x̄). Therefore

PTM(x̄)∇xH(x̄, ȳ)PTM(x̄) must be nonsingular on TM(x̄), as claimed. □

We are now ready to complete the proof of Theorem 5.3.2. Namely, Lemma 7.2.1

together with continuity of A(·) directly imply that locally around (x̄, 0), the graph of F

coincides with the graph of the map

x 7→ Φ(x) + NM(x),

where we set Φ(x) = A(x)+∇ f̂ (x). Lemma 7.2.2 directly implies that F is Cp-invertible

around (0, x̄) with inverse σ(·) if and only if Σ = PTM(x̄)∇xH(x̄, ȳ)PTM(x̄) is nonsingular

on TM(x̄). In this case, equality ∇σ(0) = Σ† holds.

7.2.2 Proof of Theorem 5.4.1

Define the random vectors wk := A(xk) − AS (xk) and define the events

Ek := {xk ∈ Bϵ2(x̄)} and Zk = {wk ∈ Bϵ1(0)}.

Note that 1Ek

p
−→ 1 by our assumptions. The very definition of xk implies the inclusion

wk ∈ (A + H)(xk). Therefore, the equality holds:

√
k(xk − x̄)1Ek∩Zk =

√
k[σ(wk1Ek∩Zk) − σ(0)]. (7.2.4)

Our task therefore reduces to computing the asymptotics of
√

kwk1Ek∩Zk and then per-

forming a first-order expansion.
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Let us first show 1Zk

p
−→ 1. A first-order expansion of A(·) and A(·, zi) around x̄ yields

∥wk − (A(x̄) − AS (x̄))︸            ︷︷            ︸
OP(1/

√
k)

+ (∇A(x̄) − ∇AS (x̄))(xk − x̄)︸                           ︷︷                           ︸
OP(1/

√
k)

∥1Ek

≤ 1
2

(
EL +

1
k

k∑
i=1

L(zi)︸      ︷︷      ︸
EL+OP(1/

√
k)

)
∥xk − x̄∥21Ek ,

(7.2.5)

where the statements in brackets follow from the central limit theorem. Rearranging,

yields

∥wk1Ek∥ ≤ ϵ
2
2EL + OP(1/

√
k) ≤

ϵ1

2
+ OP(1/

√
k).

We conclude 1Zk∩Ek

p
−→ 1. Taking into account 1Ek

p
−→ 1, we deduce 1Zk

p
−→ 1, as claimed.

Next, we show ∥xk − x̄∥ = OP(1/
√

k). Observe that (7.2.4) directly implies ∥xk −

x̄∥1Ek∩Zk ≤ lip(σ)∥wk1Ek∩Zk∥. Combining this with (7.2.5), after multiplying through by

1Zk , we deduce

lip(σ)−1∥xk − x̄∥1Ek∩Zk = OP(1/
√

k) + (EL + OP(1/
√

k))∥xk − x̄∥21Ek∩Zk .

Rearranging, yields

(lip(σ)−1 − EL∥xk − x̄∥) · ∥xk − x̄∥1Ek∩Zk = OP(1/
√

k).

Noting that the coefficient on the left hand side is bounded below by 1/2 in the event

Ek, we deduce ∥xk − x̄∥1Ek∩Zk = OP(1/
√

k). Taking into account 1Ek∩Zk

p
−→ 1, we deduce

∥xk − x̄∥ = OP(1/
√

k) as claimed.

Finally, multiplying (7.2.5) through by
√

k yields

√
kwk1Ek =

√
k(A(x̄) − AS (x̄))1Ek︸                     ︷︷                     ︸

D
−→N(0,Cov(A(x̄,z))

+ (∇A(x̄) − ∇AS (x̄))
√

k(xk − x̄)1Ek︸                                    ︷︷                                    ︸
p
−→0

+
1
2

EL(z) +
1
k

k∑
i=1

L(zi)

 O(
√

k∥xk − x̄∥2)1Ek︸                                                  ︷︷                                                  ︸
p
−→0

,
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where the claimed limits follow from the central limit theorem and the fact that
√

k∥xk−

x̄∥ is bounded in probability. Multiplying through by 1Zk , we deduce

√
kwk1Ek∩Zk =

√
k(A(x̄) − AS (x̄))1Ek∩Zk + op(1).

Thus returning to (7.2.4) and using a first-order expansion, we obtain

√
k(xk − x̄)1Ek∩Zk =

√
k∇σ(0)(A(x̄) − AS (x̄))1Ek∩Zk + op(1).

The proof is complete upon removing 1Ek∩Zk from both sides, which can be done by

noting that 1Zk∩Ek

p
−→ 1 and

√
k(xk − x̄) = OP(1) and

√
k(A(x̄) − AS (x̄)) = OP(1).

7.2.3 Proof of Lemma 5.5.2

Throughout the proof, let ϵ > 0 and L be such that

max{∥sg(x)∥, ∥A(x)∥} ≤ L ∀x ∈ Bϵ(x̄).

To see Claim (1), for all x sufficiently close to x̄, we compute

α∥Gα(x, ν)∥ = ∥x − s f (x − α(A(x) + sg(x) + ν))∥

≤ distX(x − α(A(x) + sg(x) + ν)) + α∥A(x) + sg(x) + ν∥

≤ 2α∥A(x) + sg(x) + ν∥

= 2α(2L + ∥ν∥).

Throughout the rest of the proof, we set x+ := x − αGα(x, ν). We now ver-

ify Claim 2. To this end, suppose that f is convex and by increasing L we may ensure

dist(0, ∂ f (x))} ≤ L for all x ∈ Bϵ(x̄) ∩ dom f . Choose a vector z ∈ ∂ f (x) of minimal

length. Algebraic manipulations show x = proxα f (x + αz). Since proxα f is nonexpan-

sive, for all x ∈ Bϵ(x̄), we deduce

α∥Gα(x, ν)∥ = ∥x − proxα f (x − α(A(x) + sg(x) + ν))∥
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≤ α∥A(x) + sg(x) + z + ν∥

≤ α(3L + ∥ν∥),

as claimed.

We next verify Claim 3. To this end, suppose that f is L-Lipschitz continuous on

dom g ∩ dom f . Set w := A(x) + sg(x) + ν and observe that the very definition of x+

ensures

1
2α
∥x+ − x∥2 ≤ f (x) − f (x+) − ⟨w, x+ − x⟩

≤ L∥x+ − x∥ + ∥w∥∥x+ − x∥.

Consequently, for all x ∈ Bϵ(x̄) we have α−1∥x+ − x∥ ≤ 2(L + ∥w∥) ≤ 2(3C + ∥ν∥), as

desired.

7.2.4 Proof of Lemma 5.5.3

Strong (a)-regularity implies the equalities, PTM(x)∂ f (x) = {∇M f (x)} and PTM(x)∂g(x) =

{∇Mg(x)}, for all x ∈ M near x⋆. The claimed expression (5.5.5) follows immediately.

Next, Lemma 7.2.1 implies that gph ∂( f +g) coincides with gph [∇M( f +g)+NM] around

(x⋆,−A(x⋆)). Thus locally around (x⋆, 0) equalities hold:

gph [A + ∂( f + g)] = gph [A + ∇M f + ∇Mg + NM] = gph (FM + NM),

as claimed.
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7.2.5 Proof of Proposition 5.5.4

Proof. Fix x ∈ X, α > 0, and ν ∈ Rd. Assumption J holds trivially, and follows for

example from Lemma 5.5.2(1). In order to verify Assumption (K1), we compute

∥PTM(PM(x))(Gα(x, ν) − F(PM(x)) − ν)∥ = ∥PTM(PM(x))(A(x) + sg(x) − F(PM(x)))∥.

Therefore, for x sufficiently close to x̄ we may upper bound the right-hand-side as

∥PTM(PM(x))[sg(x) − ∇Mg(PM(x))] + PTM(PM(x))[A(x) − A(PM(x))]∥

≤ C · dist(x,M),

where the inequality follows from (L1) and local Lipschitz continuity of A(·). Thus

Assumption (K1) holds. Finally, to see Assumption (K2), we compute

⟨Gα(x, ν) − ν, x − PM(x)⟩ = ⟨A(x̄) + sg(x), x − PM(x)⟩ + ⟨A(x) − A(x̄), x − PM(x)⟩

≥ µ · dist(x,M) − ∥A(x) − A(x̄)∥ · dist(x,M)

≥
µ

2 · dist(x,M),

for all x sufficiently close to x̄. The proof is complete. □

7.2.6 Proof of Proposition 5.5.6

Choose ϵ > 0 small enough that the following hold for all x ∈ Bϵ(x̄) ∩ X. First (5.5.7)

holds. In particular, since A(·) is locally Lipschitz near x̄, we may be sure that

⟨A(x) + v, x − PM(x)⟩ ≥
µ

2
· dist(x,M), (7.2.6)

for all v ∈ ∂g(x). Second we require that for some L > 0, we have

∥PTM(PM(x))(sg(x) − ∇Mg(PM(x))∥ ≤ L · dist(x,M), (7.2.7)
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∥PTM(z)(u)∥ ≤ L∥x − z∥, (7.2.8)

for all u ∈ NX(x) of unit norm and all z ∈ Bϵ(x̄) ∩M, a consequence of (M1). Third, we

may choose ϵ > 0 so small so that

⟨z, x − x′⟩ ≥ o(∥x − x′∥) (7.2.9)

for all z ∈ NX(x) of unit norm, and x′ ∈ M ∩ Bϵ(x̄)—a consequence of (M3). We will

fix x ∈ Bϵ/2(x̄) ∩ X and arbitrary α > 0 and ν ∈ Rd, and choose an arbitrary y ∈ PM(x).

Define

w = Gα(x, ν) − ν − A(x) − sg(x) and x+ = sX(x − α(A(x) + sg(x) + ν)).

Note the inclusion w ∈ NX(x+). Moreover, shrinking ϵ > 0 Assumption J directly

implies

max{∥w∥, ∥Gα(x, ν)∥} ≤ C(1 + ∥ν∥) and ∥x+ − x∥ ≤ C(1 + ∥ν∥)α,

for some constant C > 0. We will use these estimates often in the proof. Finally, we let

C be a constant independent of x, α and ν, which changes from line to line.

Assumption (K1): Suppose first that x+ ∈ Bϵ(x̄). Using (7.2.8), we compute

∥PTM(y)w∥ ≤ L∥w∥∥x+ − y∥

≤ L∥w∥(∥x+ − x∥ + dist(x,M))

≤ C(1 + ∥ν∥)2α +C(1 + ∥ν∥)dist(x,M). (7.2.10)

On the other hand, if x+ < Bϵ(x̄), then we compute

∥PTM(y)w∥ ≤ ∥w∥ ≤
2
ϵ
∥w∥∥x+ − x∥ ≤ C(1 + ∥ν∥)2α. (7.2.11)

In either case, Assumption (K1) now follows since from (7.2.7) we have

∥PTM(y)(A(x) + sg(x) − F(y)∥ ≤ ∥PTM(y)(∇Mg(y) − sg(x))∥
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+ ∥PTM(y)[A(x) − A(y)]∥

≤ Cdist(x,M),

as we had to show.

Assumption (K2): We write the decomposition

⟨Gα(x, ν) − ν, x − y⟩ = ⟨A(x) + sg(x), x − y⟩︸                   ︷︷                   ︸
R1

+ ⟨w, x+ − y⟩︸       ︷︷       ︸
R2

+ ⟨w, x − x+⟩︸       ︷︷       ︸
R3

. (7.2.12)

The estimate (7.2.6) gives

R1 ≥
µ

2 · dist(x,M). (7.2.13)

We next look at two cases. Suppose first x+ ∈ Bϵ(x̄). Using the inclusion w ∈ NX(x+)

and (7.2.9), we compute

R2 ≥ ∥w∥ · o(∥x+ − y∥) ≥ ∥w∥ · (o(∥y − x∥) − ∥x − x+∥)

≥ −C(1 + ∥ν∥)2(o(dist(x,M)) + α). (7.2.14)

Next, the Cauchy–Schwarz inequality implies

|R3| ≤ ∥w∥∥x − x+∥ ≤ C(α(1 + ∥ν∥)2). (7.2.15)

Combining (7.2.12)-(7.2.15) yields the claimed bound (K2).

Suppose now on the contrary that x+ < Bϵ(x̄) and therefore ∥x − y∥ ≤ ∥x − x+∥. We

thus deduce R2 +R3 = ⟨w, x− y⟩ ≥ −∥w∥∥x− y∥ ≥ −Cα(1+ ∥ν∥)2 holds. Combining this

estimate with (7.2.12) and (7.2.13) verifies the claim (K2).

7.2.7 Proof of Proposition 5.5.8

Let ϵ ∈ (0, 1) be small enough such that the following hold for all x ∈ Bϵ(x̄) ∩ dom f .

First (5.5.8) holds and therefore taking into account Lipschitz continuity of A(·), we may
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equivalently write

⟨A(x) + v, x − PM(x)⟩ ≥
µ

2
· dist(x,M) − (1 + ∥v∥)o(dist(x,M)), (7.2.16)

for all v ∈ ∂̂ f (x). Second we require that for some L > 0, we have

∥PTM(PM(x))(u − ∇M f (PM(x))∥ ≤ L
√

1 + ∥u∥2 · dist(x,M) (7.2.17)

for all u ∈ ∂ f (x), a consequence of strong (a) regularity. Third, we assume that ∇M f is

L-Lipschitz on Bϵ(x̄) ∩M. Fourth, we assume that A(·) is L-Lipschitz. Shrinking ϵ we

may moreover assume ϵ ≤ µ

8L . Finally, we may also assume that the maps x 7→ PM(x)

and x 7→ PTM(PM(x)) are Lipschitz continuous on Bϵ(x̄).

Fix x ∈ Bϵ/2(x̄) ∩ dom f and ν ∈ Rd and set y := PM(x). We define the vectors

w = Gα(x, ν) − A(x) − ν and x+ = s f (x − α(A(x) + ν)).

Simple algebraic manipulations show the inclusion w ∈ ∂̂ f (x+). Moreover, Assump-

tion J directly implies

max{∥w∥, ∥Gα(x, ν)∥} ≤ C(1 + ∥ν∥) and ∥x+ − x∥ ≤ C(1 + ∥ν∥)α.

We will use these estimates often in the proof. Finally, we let C be a constant indepen-

dent of x, α and ν, which changes from line to line.

Assumption (K1): First suppose x+ ∈ Bϵ(x̄). Using the triangle inequality, we write

∥PTM(PM(x))(Gα(x, ν) − F(PM(x)) − ν)∥

= ∥PTM(PM(x))(w + A(x) − A(PM(x)) − ∇M f (PM(x)))∥

≤ ∥PTM(PM(x))(w − ∇M f (PM(x+)))∥︸                                    ︷︷                                    ︸
R1

+ ∥A(x) − A(PM(x))∥︸                  ︷︷                  ︸
R2

+ ∥∇M f (PM(x))) − ∇M f (PM(x+)))∥︸                                      ︷︷                                      ︸
R3

.

Using the triangle inequality and the estimate (7.2.17) we deduce

R1 ≤ ∥PTM(PM(x+))(w − ∇M f (PM(x+)))∥ + ∥PTM(PM(x+)) − PTM(PM(x))∥op · ∥w − ∇M f (PM(x+))∥
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≤ C(1 + ∥w∥) · dist(x+,M) +C∥x − x+∥ · (1 + ∥w∥)

≤ C(1 + ∥ν∥)dist(x+,M) +C(1 + ∥ν∥)2α

≤ C(1 + ∥ν∥)(dist(x,M) +C∥x − x+∥) +C(1 + ∥ν∥)2α

≤ C(1 + ∥ν∥)dist(x,M) +C(1 + ∥ν∥)2α.

Moreover, clearly we have R2 ≤ Cdist(x,M) and R3 ≤ C∥x − x+∥ ≤ (1 + ∥ν∥)α. Condi-

tion (K1) follows immediately.

Now suppose that x+ < Bϵ(x̄), and therefore ∥x+ − x∥ ≥ ϵ/2. Then, we may write

∥PTM(PM(x))(Gα(x, ν) − ν − ∇ fM(PM(x)))∥ ≤ ∥Gα(x, ν)∥ + ∥ν∥ + ∥∇ fM(PM(x))∥

≤
2
ϵ

(∥Gα(x, ν)∥ + ∥ν∥ + ∥∇ fM(PM(x))∥)∥x − x+∥

≤ C(1 + ∥ν∥)2α,

as desired.

Assumption (K2): We begin with the decomposition

⟨Gα(x, ν) − ν, x − y⟩ = ⟨A(x+) + w, x+ − PM(x+)⟩︸                           ︷︷                           ︸
R1

+ ⟨A(x) − A(x+), x − y⟩︸                    ︷︷                    ︸
R2

+ ⟨A(x+) + w, (x − PM(x)) − (x+ − PM(x+))⟩︸                                                  ︷︷                                                  ︸
R3

.

We now bound the two terms on the right in the case x+ ∈ Bϵ(x̄). Using (7.2.16), we

estimate

R1 ≥
µ

2 · dist(x+,M) − (1 + ∥w∥)o(dist(x+,M))

≥
µ

2 · (dist(x,M) − ∥x − x+∥) − (1 + ∥ν∥)(o(dist(x,M)) + ∥x − x+∥)

≥
µ

2 · dist(x,M) − (1 + ∥ν∥)2(o(dist(x,M)) +Cα).

Next, we compute

|R2| ≤ ∥A(x) − A(x+)∥ · dist(x,M) ≤ 2Lϵ · dist(x,M) ≤
µ

4
dist(x,M).
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Next using Lipschitz continuity of the map I − PM on Bϵ(x̄), we deduce

|R3| ≤ C∥A(x+) + w∥ · ∥x − x+∥ ≤ C(1 + ∥ν∥)2α.

The claimed proximal aiming condition follows immediately with µ replaced by µ/4.

Let us look now at the case x+ < Bϵ(x̄), and therefore dist(x,M) ≤ ϵ
2 ≤ ∥x − x+∥.

Then we compute

⟨Gα(x, ν) − ν, x − PM(x)⟩ ≥ −dist(x,M) · ∥Gα(x, ν) − ν∥

= dist(x,M) − dist(x,M)(1 + ∥Gα(x, ν) − ν∥)

≥ dist(x,M) −C∥x − x+∥(1 +C(1 + ∥ν∥))

≥ dist(x,M) −C(1 + ∥ν∥)2α,

as desired. The proof is complete.

7.2.8 Proof of Theorem 5.6.1

7.2.8.1 The two pillars of the proof of Theorem 5.6.1

We begin by outlining the main ingredients of the proof. Namely, Assumption K at a

point x̄ guarantees two useful behaviors, provided the iterates {xk} of algorithm (5.5.2)

remain in a small ball around x̄. First xk must approach the manifold M containing

x̄ at a controlled rate, a consequence of the proximal aiming condition. Second the

shadow yk = PM(xk) of the iterates along the manifold form an approximate Riemannian

stochastic gradient sequence with an implicit retraction. Moreover, the approximation

error of the sequence decays with dist(xk,M) and αk, quantities that quickly tend to

zero.
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The formal statements summarizing these two modes of behavior require local argu-

ments. Consequently, we will frequently refer to the following stopping time: given an

index k ≥ 1 and a constant δ > 0, define

τk,δ := inf{ j ≥ k : x j < Bδ(x̄)}. (7.2.18)

Note that the stopping time implicitly depends on x̄, a point at which Assumption K

is satisfied. The following proposition shows that sequence xk rapidly approaches the

manifold. It was proved in Section 4.3.1 specifically for optimization problems rather

than for finding zeros of set-valued maps; the argument in this more general setting is

identical.

Proposition 7.2.3 (Pillar I: aiming towards the manifold). Suppose that Assumptions I,

J, K, and E hold. Let γ ∈ (1/2, 1] and assume c1 ≥ 32/µ if γ = 1. Then for all k0 ≥ 1

and sufficiently small δ > 0, there exists a constant C, such that the following hold with

stopping time τk0,δ defined in (7.2.18):

1. There exists a random variable Vk0,δ such that

(a) The limit holds:

k2γ−1

log(k + 1)2 dist2(xk,M)1τk0 ,δ>k
a.s.
−−→ Vk0,δ.

(b) The sum is almost surely finite:

∞∑
k=1

kγ−1

log(k + 1)2 dist(xk,M)1τk0 ,δ>k < +∞.

2. The following are true.

(a) The expected squared distance satisfies:

E[dist2(xk,M)1τk0 ,δ>k] ≤ Cαk for all k ≥ 1.
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(b) The tail sum is bounded:

E

 ∞∑
i=k

αidist(xi,M)1τk0 ,δ>i

 ≤ C
∞∑

i=k

α2
i for all k ≥ 1.

Next, we study the evolution of the shadow yk = PM(xk) along the manifold, showing

that yk is locally an inexact Riemannian stochastic gradient sequence with an error that

asymptotically decays as xk approaches the manifold. Consequently, we may control

the error using Proposition 7.2.3. The following proposition was proved in Section 4.3.2

specifically for optimization problems rather than for finding zeros of set-valued maps;

the argument in this more general setting is identical.

Proposition 7.2.4 (Pillar II: the shadow iteration). Suppose that Assumptions I, J, K,E

hold. Then for all k0 ≥ 1 and sufficiently small δ > 0, there exists a constant C, such that

the following hold with stopping time τk0,δ defined in (7.2.18): there exists a sequence of

Fk+1-measurable random vectors Ek ∈ R
d such that

1. The shadow sequence

yk =


PM(xk) if xk ∈ B2δ(x̄)

x̄ otherwise.

satisfies yk ∈ B4δ(x̄) ∩M for all k and the recursion holds:

yk+1 = yk − αkFM(yk) − αkPTM(yk)(νk) + αkEk for all k ≥ 1. (7.2.19)

Moreover, for such k, we have Ek[PTM(yk)(νk)] = 0.

2. Let γ ∈ (1/2, 1] and assume that c1 ≥ 32/µ if γ = 1.

(a) We have the following bounds for k0 ≤ k ≤ τk0,δ − 1:

i. max{Ek[∥Ek∥1τk0 ,δ>k,Ek[∥Ek∥
21τk0 ,δ>k]} ≤ C.

ii. E[∥Ek∥
21τk0 ,δ>k] ≤ Cαk.
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iii. The sum is finite:
∞∑

k=1

kγ−1

log(k + 1)2 max{∥Ek∥1τk0 ,δ>k,Ek[∥Ek∥]1τk0 ,δ>k} < +∞.

(b) The tail sum is bounded

E

1τk0 ,δ=∞

∞∑
i=k

αi∥Ei∥

 ≤ C
∞∑

i=k

α2
i for all k ≥ 1.

With the two pillars we separate our study of the sequence xk into two orthogonal

components: In the tangent/smooth directions, we study the sequence yk, which arises

from an inexact gradient method with rapidly decaying errors and is amenable to the

techniques of smooth optimization. In the normal/nonsmooth directions, we steadily

approach the manifold, allowing us to infer strong properties of xk from corresponding

properties for yk.

We now outline common notation and conventions used in the rest of the proof.

We let U be the neighborhood of x̄ where the standing assumptions hold. Shrinking

U, we may assume that the projection map PM is C2 in U, and in particular PM is

Lipschitz with Lipschitz Jacobian. Throughout, the proof we shrink U several times,

when needed.

Now, denote stopping time (7.2.18) by τ := τk0,δ and the noise bound by Q :=

supx∈Bδ(x̄) q(x). Observe that by Proposition 7.2.4, the shadow sequence yk satisfies yk ∈

B4δ(xk) ∩M ⊆ Bϵ(x̄) ∩M and recursion (7.2.19) holds. In addition, we let C denote a

constant depending on k0 and δ, which may change from line to line.

7.2.8.2 Rates near strong local minimizers

As the first step, we obtain a fast rate of convergence under the growth condition (5.6.1);

this rate is comparable to the convergence rate of SGD for minimizing smooth strongly
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convex functions. To this end, we first need the following Lemma ensuring that FM has

sufficient curvature in B2δ(x̄).

Lemma 7.2.5 (Curvature). The estimate

⟨FM(y), y − x̄⟩ ≥
µ

2
∥y − x̄∥2 ,

holds for all x ∈ M sufficiently close to x̄.

Proof. Let Φ be a smooth extension of FM to a neighborhood of U ⊂ Rd of x̄. Consider

an arbitrary sequence xi ∈ M converging to x̄. Passing to a subsequence, we may

assume that the unit vectors xi−x̄
∥xi−x̄∥ converge to some unit vector w ∈ TM(x̄). Let Hi :=∫ 1

0
∇Φ(x̄ + τ(xi − x̄)) dτ denote the average Jacobian between x̄ and xi. Note that Hi

clearly tends to ∇Φ(x̄) as i tends to infinity. The fundamental theorem of calculus yields

⟨Φ(xi) − Φ(x̄), xi − x̄⟩
∥xi − x̄∥2

=

〈
Hi

( xi − x̄
∥xi − x̄∥

)
,

xi − x̄
∥xi − x̄∥

〉
→

i→∞
⟨∇Φ(x̄)w,w⟩ ≥ µ.

Since xi ∈ M was an arbitrary sequence converging to x̄, the result follows. □

Next, we obtain a familiar one-step improvement guarantee.

Lemma 7.2.6 (One-step improvement). For all sufficiently small δ, there exists a con-

stant C such that for any k ≥ k0, we have

E[∥yk+1 − x̄∥2 1τ>k] ≤
(
1 −

αkµ

2

)
E[∥yk − x̄∥2 1τ>k] +Cα2

k . (7.2.20)

Proof. Expanding ∥yk+1 − x̄∥2, we obtain

∥yk+1 − x̄∥2 1τ>k

= ∥yk − αkFM(yk) − αkPTM(yk)(νk) + αkEk − x̄∥2 1τ>k

= ∥yk − αkFM(yk) + αkEk − x̄∥2 1τ>k + α
2
k ∥PTM(yk)(νk)∥2 1τ>k
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− 2αk ⟨yk − αkFM(yk) + αkEk − x̄, PTM(yk)(νk)⟩ 1τ>k

= ∥yk − αkFM(yk) − x̄∥2 1τ>k︸                           ︷︷                           ︸
P1

+α2
k ∥Ek∥

2 1τ>k + 2αk ⟨yk − αkFM(yk) − x̄, Ek⟩ 1τ>k︸                              ︷︷                              ︸
P2

+ α2
k ∥PTM(yk)(νk)∥2 1τ>k − 2αk ⟨yk − αkFM(yk) + αkEk − x̄, PTM(yk)(νk)⟩ 1τ>k︸                                                    ︷︷                                                    ︸

P3

. (7.2.21)

Using Lemma 7.2.5, we may bound P1 as

P1 =
(
∥yk − x̄∥2 − 2αk ⟨FM(yk), yk − x̄⟩ + α2

k ∥∇ fM(yk)∥2
)

1τ>k

≤
(
(1 − αkµ) ∥yk − x̄∥2 +Cα2

k
)

1τ>k

Next, using Proposition 7.2.4 (2(a)i) and Assumption E, we see that Ek[∥Ek∥
2 1τ>k] and

Ek[∥PTM(yk)(νk)∥21τ>k] are bounded by a numerical constant. It remains to bound P2 and

P3. Beginning with the former, using Young’s inequality, we compute

P2 ≤
µ∥yk − αkFM(yk) − x̄∥21τ>k

8
+

2∥Ek∥
21τ>k

µ
=
µP1

8
+

2∥Ek∥
21τ>k

µ
.

Next, again using Young’s inequality, we bound the conditional expectation of P3 as

follows:

Ek[P3] = αkEk[⟨Ek, PTM(yk)(νk)⟩ 1τ>k] ≤
αkEk∥Ek∥

21τ>k

2
+Cαk.

Thus, returning to Lemma 7.2.21 and using Proposition 7.2.4(2(a)ii), we arrive at the

estimate:

E[∥yk+1 − x̄∥2 1τ>k] ≤ (1 − αkµ/2)E[∥yk − x̄∥2 1τ>k] +Cα2
k .

This completes the proof. □

Next, we can iterate the recursion to ensure a fast rate of convergence of ∥yk− x̄∥. As a

byproduct, we also obtain estimates on the size of the errors Ek. To simplify notation, we

write τk0 := τk0,δ, since we will consider several values of k0. Under these conventions,

we have the following Proposition, which will be useful in ensuring summability of

certain sequences.
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Lemma 7.2.7. There exists C > 0 such that

1. E[∥yk − x̄∥2 1τk0>k] ≤ C/kγ for all k ≥ 1.

2.
∑∞

k=1
1
√

k
∥yk − x̄∥2 < ∞ almost surely.

3. 1
√

n

∑n
k=1 ∥yk − x̄∥2 → 0 almost surely.

4.
∑∞

k=1
1
√

k
∥Ek∥ < +∞ almost surely.

5. 1
√

n

∑n
k=1 ∥Ek∥ < +∞ almost surely.

Proof. Part 1 follows immediately from Lemmas 7.2.6 and 7.2.19 by setting sk =

E[∥yk − x̄∥2 1τk0>k]. We now prove Part 2. By Part 1, we have

E

 ∞∑
k=1

1
√

k
∥yk − x̄∥2 1τk0>k

 ≤ ∞∑
k=1

C

kγ+
1
2

< ∞.

Therefore,
∑∞

k=1
1
√

k
∥yk − x̄∥2 1τk0>k is finite almost surely. Taking into account that xk →

x̄ almost surely, the sum
∑∞

k=1
1
√

k
∥yk − x̄∥2 must be finite almost surely. Part 3 now

follows immediately follows from Kronecker lemma 7.2.16

Next, we prove Part 4. By Proposition 7.2.4(2(a)iii ), we know that the error se-

quence Ek almost surely satisfies
∞∑

k=1

1
√

k
∥Ek∥1τk0>k < +∞.

Since xk → x̄ almost surely, we deduce that almost surely we have
∑∞

k=1
1
√

k
∥Ek∥ < +∞,

as desired. Part 5 follows from Kronecker lemma 7.2.16. □

7.2.8.3 Completing the proof of Theorem 5.6.1

We now turn to the proof of Theorem 5.6.1. To this end, we introduce an additional

sequence

zk := Px̄+TM(x̄)(yk). (7.2.22)
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Evidently, for all δ sufficiently small, zk closely approximates yk. Indeed, due to the

smoothness ofM, there exists C > 0 such that

∥yk − zk∥1τk0>k ≤ C∥yk − x̄∥21τk0>k. (7.2.23)

The next result states that it suffices to study the distribution of 1
√

n

∑n
k=1(zk − x̄).

Lemma 7.2.8 (Reduction to an auxiliary sequence). The equation holds:

1
√

n

n∑
k=1

(xk − x̄) =
1
√

n

n∑
k=1

(zk − x̄) + o(1).

Proof. Note that

1
√

n

n∑
k=1

(xk − x̄) =
1
√

n

n∑
k=1

(zk − x̄) +
1
√

n

n∑
k=1

(xk − yk) +
1
√

n

n∑
k=1

(yk − zk).

By Lemma 7.2.12 (4), the result will follow once we show that

1
√

n

n∑
k=1

(xk − yk)→ 0 and
1
√

n

n∑
k=1

(yk − zk)→ 0,

almost surely. To that end, we recall that Proposition 7.2.3(1b) guarantees that almost

surely we have
∞∑

k=1

1
√

k
∥xk − yk∥ 1τk0>k < +∞

Since xk → x̄ almost surely, for almost every sample path, we can find a k0 such that

τk0 = ∞. Therefore, almost surely we have
∑∞

k=1
∥xk−yk∥√

k
< ∞. Applying Kronecker

lemma 7.2.16, almost surely we have

1
√

n

n∑
k=1

∥xk − yk∥ → 0,

which implies 1
√

n

∑n
k=1(xk − yk) → 0. On the other hand, we have by Lemma 7.2.7 and

inequality (7.2.23), that

∞∑
k=1

1
√

k
∥yk − zk∥ 1τk0>k ≤

∞∑
k=1

C
√

k
∥yk − x̄∥2 1τk0>k < +∞
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Again since for almost every sample path we may find k0 such that τk0 = ∞, we have

that
∑∞

k=1
1
√

k
∥yk − zk∥ < +∞, as desired. □

In light of Lemma 7.2.8, it suffices now to study the asymptotic of 1
√

n

∑n
k=1(zk − x̄).

This is the content of following lemma. Notice that in the lemmas, we state the asymp-

totic covariance matrix in a different equivalent form to that appearing in Theorem 5.6.1,

and which is more convenient for computation.

Lemma 7.2.9. The expansion holds:

1
√

n

n∑
k=1

(zk − x̄) = −
1
√

k

k∑
i=1

(U⊤∇MFM(x̄)U)−1U⊤ν(1)
i + oP(1),

and therefore 1
√

n

∑n
k=1(zk − x̄) converges in distribution to

N
(
0,U(U⊤∇FM(x̄)U)−1U⊤ · Σ · U(U⊤∇FM(x̄)U)−1U⊤

)
,

where U is a matrix whose column vectors form an orthonormal basis of TM(x̄).

Proof. Recall that UU⊤ is the orthogonal projection onto TM(x̄). Therefore, we may

write zk = x̄ + UU⊤(yk − x̄). Moreover, subtracting x̄ from both sides of (7.2.19) and

multiplying by U⊤, we have

U⊤(yk+1 − x̄) = U⊤(yk − x̄) − αkU⊤FM(yk) − αkU⊤PTM(yk)(νk) + αkU⊤Ek

= U⊤(yk − x̄) − αkU⊤∇MFM(x̄)UU⊤(yk − x̄)

− αk(U⊤FM(yk) − U⊤∇MFM(x̄)UU⊤(yk − x̄))

− αkU⊤PTM(x̄)(νk) − αk(U⊤PTM(yk)(νk) − U⊤PTM(x̄)(νk)) + αkU⊤Ek.

Define ∆k = U⊤(yk − x̄), H = U⊤∇MFM(x̄)U, ζk = U⊤PTM(yk)(νk) − U⊤PTM(x̄)(νk), and

R(y) = U⊤FM(y) − U⊤∇MFM(x̄)UU⊤(y − x̄).

254



By our assumption, for every vector z the matrix H satisfies

⟨Hz, z⟩ = ⟨∇MFM(x̄)Uz,Uz⟩ ≥ σ∥Uz∥2 = σ∥z∥2.

Consequently H is a strongly monotone matrix. Note moreover the equality

U⊤PTM(x̄)(νk) = U⊤UU⊤νk = U⊤νk. Thus we can rewrite the update of ∆k as

∆k+1 = ∆k − αkH∆k − αkU⊤νk − αk (R(yk) + ζk − U⊤Ek) .

In the remainder of the proof, we study the asymptotics of 1
√

n

∑n
k=1 ∆n, which readily

imply the claimed result using the expression 1
√

n

∑n
k=1(zk − x̄) = 1

√
n

∑n
k=1 U∆k. We note

that our proof closely mirrors [150, Theorem 2]. Define the matrices

Bn
k = αk

n∑
i=k

i∏
j=k+1

(I − α jH) and An
k = Bn

k − H−1.

Polyak and Juditsky [15, Lemma 2] show that ∆̄n =
1
n

∑n
k=1 ∆k satisfies the equality

√
n∆̄n =

1
√

n

n∑
k=1

H−1U⊤νk

+
1
√

n

n∑
k=1

An
kU⊤νk +

1
√

n

n∑
k=1

Bn
k[R(yk) + ζk − U⊤Ek] + O

(
1
√

n

)
,

where supk,n max{
∥∥∥Bn

k

∥∥∥ , ∥∥∥An
k

∥∥∥} < +∞ and limn→∞
1
n

∑n
k=1

∥∥∥An
k

∥∥∥ = 0. Equivalently, after

expanding νk = ν
(1)
k + ν

(2)
k (xk), we obtain

√
n∆̄n =

1
√

n

n∑
k=1

H−1U⊤ν(1)
k

+
1
√

n

n∑
k=1

An
kU⊤ν(1)

k +
1
√

n

n∑
k=1

Bn
k[R(yk) + ζk − U⊤Ek + ν

(2)
k (xk)] + O

(
1
√

n

)
.

Assumption P ensures that the sum 1
√

n

∑n
k=1 H−1U⊤ν(1)

k converges in distribution to

N
(
0, (U⊤∇MFM(x̄)U)−1U⊤ΣU(U⊤∇MFM(x̄)U)−1) .

Thus the theorem will be proved once we show that the other sums in our expression for
√

n∆̄n converge to 0 almost surely. We do so in the following sequence of claims.
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Claim: We have that
1
√

n

n∑
k=1

An
kU⊤ν(1)

k
a.s.
−−→ 0.

Proof. Using that supk,n ∥A
n
k∥ < ∞ and that E∥νk∥

21τk0>k is bounded, we deduce

E


∥∥∥∥∥∥∥ 1
√

n

n∑
k=1

An
kU⊤ν(1)

k

∥∥∥∥∥∥∥
2

1τk0>k

 = 1
n

n∑
k=1

E
[∥∥∥An

kU⊤ν(1)
k 1τk0>k

∥∥∥2]
≤

C
n

n∑
k=1

∥An
k∥

→ 0.

Thus 1
√

n

∑n
k=1 An

kU⊤νk1τk0>k is a L2-bounded martingale. By [85, Theorem 4.4.6], we

know that 1
√

n

∑n
k=1 An

kU⊤νk1τk0>k
L2

−→ 0. On the other hand, by [85, Theorem 4.2.11],

1
√

n

∑n
k=1 An

kU⊤νk1τk0>k converges almost surely. Therefore, since for almost every sample

path there exists k0 such that τk0 = ∞, we have 1
√

n

∑n
k=1 An

kU⊤νk
a.s.
−−→ 0, as desired. □

Claim: We have that
1
√

n

n∑
k=1

Bn
kU⊤R(yk)

a.s.
−−→ 0.

Proof. Let Φ be a smooth extension of FM to a neighborhood U ⊂ Rd of x̄. We then

deduce

R(y) = U⊤(Φ(y) − Φ(x̄) − ∇Φ(x̄)UU⊤(y − x̄))

= U⊤∇Φ(x̄)(I − UU⊤)(y − x̄) + O(∥y − x̄∥2)

= U⊤∇Φ(x̄)PNM(x̄)(y − x̄) + O(∥y − x̄∥2)

Since M is C2-smooth, it follows immediately that ∥PNM(x̄)(y − x̄)∥ ≤ O(∥y − x̄∥2) as

y ∈ M tends to x̄. Thus, we have ∥R(y)∥ = O(∥y − x̄∥2). In addition, by our assumption

that xk
a.s.
−−→ x̄, we have yk

a.s.
−−→ x̄. Consequently, there exists a constant C depending on
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sample path such that ∥R(yk)∥ ≤ C ∥yk − x̄∥2 almost surely. Uniform boundedness of Bn
k

and Lemma 7.2.7 therefore implies 1
√

n

∑n
k=1 Bn

kU⊤R(yk)
a.s.
−−→ 0. □

Claim: We have that
1
√

n

n∑
k=1

Bn
kζk

a.s.
−−→ 0.

Proof. For k ≥ 1, define truncated variables ζ(k0)
k = ζk1τk0>k. Note that suffices to show

that
1
√

n

n∑
k=1

Bn
kζ

(k0)
k

a.s.
−−→ 0,

since on every sample path there exists a k0 such that τk0 = ∞. Thus, we will work with

these truncated variables throughout.

Turning to the proof, we first show that 1
√

n

∑n
k=1 ζ

(k0)
k

P
−→ 0 and 1

√
n

∑n
k=1 An

kζ
(k0)
k

P
−→ 0.

Recall that ζk = U⊤PTM(yk)(νk) − U⊤PTM(x̄)(νk), so we have

E
[
ζ(k0)

k | Fk

]
= E [ζk | Fk] 1τk0>k = 0.

Since x 7→ PTM(x) is locally Lipschitz on a neighborhood of x̄ inM, we have the follow-

ing bound for some C > 0 and all sufficiently small δ:

∥∥∥ζ(k0)
k

∥∥∥2
≤ C ∥yk − x̄∥2 1τk0>k,

In particular, it holds that

E
[∥∥∥ζ(k0)

k

∥∥∥2
| Fk

]
≤ C2 ∥yk − x̄∥2 1τk0>k.

Combining with Lemma 7.2.7(1), we know that ζ(k0)
k is a martingale difference sequence

and almost surely,

∞∑
k=1

1
k
E

[∥∥∥ζ(k0)
k

∥∥∥2
| Fk

]
≤ C2

∞∑
k=1

1
k
∥yk − x̄∥2 < ∞.
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Therefore, by Lemma 7.2.15, we have

1
√

n

n∑
k=1

ζ(k0)
k

a.s.
−−→ 0.

In particular, it holds that 1
√

n

∑n
k=1 ζ

(k0)
k

P
−→ 0.

Next we show that for any k0 < ∞, we have n−1/2 ∑n
k=1 An

kζ
(k0)
k

P
−→ 0. To see this, note

that by Lemma 7.2.7, there exists C′ > 0 such that

E
[∥∥∥ζ(k0)

k

∥∥∥2]
≤ CE

[
∥yk − x̄∥2 1τk0>k

]
≤ C′αk. (7.2.24)

Hence, the following limit holds

E


∥∥∥∥∥∥∥ 1
√

n

n∑
k=1

An
kζ

(k0)
k

∥∥∥∥∥∥∥
2 = 1

n

n∑
k=1

E
[∥∥∥An

kζ
(k0)
k

∥∥∥2]
≤

C′αk

n

n∑
k=1

∥An
k∥

2
≤

C′αk supk,n ∥A
n
k∥

n

∞∑
k=1

∥An
k∥ → 0,

where the first equality follows from the martingale difference property and the second

inequality follows from the boundedness of moments of ζ(k0)
k . Consequently, we have

shown that
1
√

n

n∑
k=1

An
kζ

(k0)
k

L2

−→ 0,

which implies that 1
√

n

∑n
k=1 An

kζ
(k0)
k

P
−→ 0.

We have therefore proved that 1
√

n

∑n
k=1 Bn

kζ
(k0)
k

P
−→ 0. We now show that

1
√

n

∑n
k=1 Bn

kζ
(k0)
k converges almost surely. Since the almost sure limits and limits in prob-

ability agree when both exist, this will complete the proof.

To this end, define the sequence

Zn,k0 =

n∑
k=1

Bn
kζ

(k0)
k .

The result follows if we can prove that for any finite k0, the sequence n−1/2Zn,k0 almost

surely converges. To that end, note that Bn+1
k − Bn

k = αk
∏n

i=k+1(I − αiH). Thus, defining

Wn
k =

n∏
i=k

(I − αiH), Vn,k0 =

n∑
k=1

αkWn+1
k+1 ζ

(k0)
k ,
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we deduce that Vn,k0 is Fn+1 measurable and Zn,k0 admits the decomposition:

Zn,k0 = Zn−1,k0 + Vn−1,k0 + αnζ
(k0)
n =

n−1∑
k=1

Vk,k0 +

n∑
k=1

αkζ
(k0)
k .

Note that the sum
∑n

k=1 αkζ
(k0)
k is a square-integrable martingale with summable squared

increments, so it converges almost surely [85, Theorem 4.2.11]. As a result, we have

the following limit n−1/2 ∑n
k=1 αkζ

(k0)
k

a.s.
−−→ 0. It thus suffices to show that n−1/2 ∑n−1

k=1 Vk,k0

converges almost surely.

To that end, let λ denote the smallest eigenvalue of H. Then we have

E
[
∥Vn,k0∥

2] = n∑
k=1

α2
k

∥∥∥Wn+1
k+1

∥∥∥2
E

[∥∥∥ζ(k0)
k

∥∥∥2]
≤ C′

n∑
k=1

α3
k

∥∥∥Wn+1
k+1

∥∥∥2
, (7.2.25)

where the inequality follows from the bound E
[∥∥∥ζ(k0)

k

∥∥∥2]
≤ C′αk (see Equation (7.2.24)).

The result [, Lemma 1 (part 3)] shows that there exist constants β > 0 and K < ∞ such

that for all k and t ≥ k, the estimate holds:

∥∥∥Wn+1
k+1

∥∥∥2
≤ K exp

−β n∑
i=k+1

αi

 .
Plugging this estimate into (7.2.25), exactly the same proof as that of [150, Lemma A.7]

with ρ = 3 shows that there exists some constant C such that

E
[
∥Vn,k0∥

2]
≤

C log n
n2γ .

Hence, for any ϵ > 0, we can find some C such that

E
[
∥Vn,k0∥

2]
≤

C
n2γ−ϵ .

Now define Tn,k0 =
1
√

n

∑n
k=1 Vk,k0 . We claim that Tn,k0 almost surely has finite length.

Indeed, for any ϵ > 0 there exists C,C′ > 0 such that

E [∥Tn,k0 − Tn+1,k0∥] ≤
∣∣∣∣∣ 1
√

n + 1
−

1
√

n

∣∣∣∣∣ n∑
k=1

E [∥Vk,k0∥] +
1

√
n + 1

E [∥Vn+1,k0∥]
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≤
C

n
3
2

n∑
k=1

1
kγ−ϵ
+

1
√

n
1

nγ−ϵ

≤
C′

nγ+1/2−ϵ .

Since γ ∈ ( 1
2 , 1), we therefore have

∑
n E [∥Tn,k0 − Tn+1,k0∥] < ∞. Consequently, the

sum is finite almost surely:
∑

n ∥Tn,k0 − Tn+1,k0∥ < +∞. This implies that Tn,k0 =

n−1/2 ∑n
k=1 Vk,k0 converges almost surely. Recalling the definition of Vk,k0 , we find that

n−1/2Zn,k0 almost surely converges, which completes the proof. □

Claim: We have that
1
√

n

n∑
k=1

Bn
kν

(2)
k (xk)

a.s.
−−→ 0.

Proof. This may be proved by argument that mirrors Claim 7.2.8.3. Indeed, observe

that the sequence ξk = ν
(2)
k (xk)1τ>k0 is a martingale difference sequence, the bounds hold

for some C > 0

Ek[∥ξk∥
2] ≤ C∥xk − x̄∥21τ>k0 and E[∥ξk∥

2] ≤ Cαk,

and
∑∞

k=1
1
kEk[∥ξk∥

2] ≤
∑∞

k=1
1
k ∥xk − x̄∥21τ>k0 < +∞. Only these facts for ζ(k0)

k were used

to prove Claim 7.2.8.3. □

Claim: We have that
1
√

n

n∑
k=1

Bn
kU⊤Ek

a.s.
−−→ 0.

Proof. This follows immediately from Lemma 7.2.7(5 and the fact that supk,n

∥∥∥Bn
k

∥∥∥ < ∞.

□

Taking these claims into account, the proof is complete. □
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7.2.9 Proof of Lemma 5.7.1

We first consider the normalizing constant C(u) = 1 +
∫

h(u⊤g(z)) dP(z). The dom-

inated convergence theorem1 implies that C(·) is twice differentiable with ∇C(u) =∫
h′(u⊤g(z))g(z)⊤ dP(z) and ∇2C(u) =

∫
h′′(u⊤g(z))g(z)g(z)⊤ dP(z). Moreover, the dom-

inated convergence theorem2 implies that A(x) is C1-smooth with ∇A(x) = Ez∼P∇A(x, z).

Thus it now suffices to argue that L̂(x, u) :=
∫

h(u⊤g(z))A(x, z) dP(z) is C1-smooth. An

application of the dominated convergence theorem in u directly implies that L̂(x, u)

is differentiable in u with ∇uL̂(x, u) =
∫

h′(u⊤g(z))A(x, z)g(z)⊤ dP(z) and moreover

∇uL̂(x, u) is continuous in (x, u). Similarly, the dominated convergence theorem3 im-

plies that L̂(x, u) is differentiable in x with ∇xL̂(x, u) =
∫

h(u⊤g(z))∇A(x, z) dP(z) and

∇xL̂(x, u) is continuous in (x, u). Thus L(·, ·) is C1-smooth near (x̄, u). Observe that the

expression ∇xL(x̄, 0) = ∇A(x̄) follows trivially since L(x, 0) ≡ A(x) for all x. To see

the expression for ∇uL(x, 0), observe that ∇C(0) = 0 and ∇2C(0) = 0 and therefore

C(u) = 1 + o(∥u∥2). It follows immediately that ∇uL(x, 0) = ∇uL̂(x, 0) for all x, thereby

completing the proof.

7.2.10 Proof of Lemma 5.7.2

Assumption G ensures that the map A+H is C1 invertible around (x̄, 0) with some inverse

σ(·). Define now the linearization Ψ(x) := A(x̄) + ∇A(x̄)(x − x̄) of A at x̄. Invoking [90,

Theorem 2B.10], we deduce that the map Ψ + H is also C1 invertible around (0, x̄) with

inverse σ̂ and which satisfies ∇σ̂(0) = ∇σ(0). Note that in light of Lemma 5.7.1, we

may equivalently write Ψ as Ψ(x) := L(x̄, 0) +∇xL(x̄, 0)(x − x̄). Applying [90, Theorem

1using that h′ and h′′ are bounded and Ez∼P∥g(z)∥2 < ∞
2using that there is a neighborhood U of x̄ such that supx∈U ∥∇A(x, z)∥2 is integrable.
3using that h is bounded and there is a neighborhood U of x̄ such that supx∈U ∥∇A(x, z)∥2 is integrable.
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2D.6], we deduce that the map S (u) admits a single-valued localization s(·) around (0, x̄)

that is differentiable at 0 and satisfies ∇s(0) = −∇σ̂(0) ◦ ∇uL(x̄, 0). An application of

Lemma 5.7.1 completes the proof.

7.2.11 Proof of Theorem 5.7.3

The proof of Theorem 5.7.3 will be based on the local minimax theorem of Hájek and

Le Cam [17, Theorem 6.6.2], which is summarized in Section 7.2.15. We aim to apply

Theorem 7.2.22 as follows. For each u, we take (Ωk,Fk,Qk,u) to be the k-fold product

of the probability spaces (Ω,F ,Pu/
√

k) and set Γk(u) = s(u/
√

k). It was shown in [16,

Lemma 8.3] that the the sequence {Ωk,Fk,Qk,u}u∈Rd is locally asymptotically normal

with precision V = E
z∼P

[g(z)g(z)⊤]. Moreover, the following lemma establishes regularity

of the sequence Γk.

Lemma 7.2.10. The sequence Γk : Rd → Rd is regular at zero with derivative Γ̇ :=

−∇σ(0) · Ez∼P[g(z)A(x̄, z)⊤].

Proof. Using Lemma 5.7.2, a first-order expansion of s(·) around x̄ yields

√
k(Γk(u) − Γk(0)) =

√
k(s(u/

√
k) − x̄) = −∇σ(0) · E

z∼P
[g(z)A(x̄, z)⊤]u +

o(k−1/2)
k−1/2 .

Letting k tends to infinity completes the proof. □

We now apply Theorem 7.2.22. Let L : Rd → [0,∞) be symmetric, quasiconvex,

and lower semicontinuous, and x̂k : Z k → Rd be a sequence of estimators. Set

g(z) := A(x̄, z) − A(x̄),

Σ := E
z∼P

[g(z)g(z)⊤],
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K := ∇σ(0).

Applying Theorem 7.2.22 yields

sup
I⊂Rd , |I|<∞

lim inf
k→∞

max
u∈I
EPk

u/
√

k
[L(
√

k(x̂k − x̄u/
√

k))] ≥ E[L(Zλ)] (7.2.26)

where Zλ ∼ N(0,KΣ(Σ + λI)−1Σ⊤K⊤) for any λ > 0. Basic linear algebra shows

lim
λ↓0
Σ(Σ + λI)−1

Σ = Σ.

A straightforward argument based on the monotone convergence theorem (see e.g. [91,

Section 5.1.2]) therefore implies that the right side of (7.2.26) tends to E[L(Z)] as λ ↓ 0,

where Z ∼ N(0,WΣW⊤). The proof is complete.

7.2.12 Proof of Theorems 5.7.4, 5.7.5, and 5.7.6

The proof is the same for all three theorems. Namely, we aim to apply Theorem 7.2.23.

To this end, set Qk,u = Pk
u/
√

k
and Γk(u) = s(u/

√
k). Set Zk := − 1

√
k

∑k
i=1 g(zi). It is shown

in [16, Lemma 8.3] that the the following expansion holds:

log
dQk,u

dQk,0
= u⊤Zk −

1
2

u⊤Vu + oQk,0(1) (7.2.27)

with V := EPg(z)g(z)⊤ = Cov(A(x̄, z)). Each of Theorem 5.4.1, Theorem 5.6.1, and

Corollary 5.6.2 yields the expansion

√
k(xk − x̄) = −∇σ(0)︸   ︷︷   ︸

=:W

Zk + oQk,0(1),

Note that by Lemma 5.7.2, Γk is regular at zero with derivative

Γ̇ = ∇σ(0) = −∇σ(0) · E
z∼P

[A(x̄, z)g(z)⊤] = −∇σ(0) · Cov(A(x̄, z)).

Finally, observe the equalities

Γ̇ = WV and WVW⊤ = ∇σ(0) · Cov(A(x̄, z))∇σ(0)⊤.
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Theorem 7.2.23 thus ensures that

√
k(xk − Γk(u))

u
{ N(0,∇σ(0) · Cov(A(x̄, z))∇σ(0)⊤). (7.2.28)

Let L : Rd → R be any bounded continuous function and Z ∼ N(0,∇σ(0) ·

Cov(A(x̄, z))∇σ(0)⊤). Then (7.2.31) directly implies that for every finite subset I ⊂ Rd,

we have

lim
k→∞

max
u∈I
EQk,u[L(

√
k(Tk − Γk(u)))] = max

u∈I
lim
k→∞
EQk,u[L(

√
k(Tk − Γk(u)))] = E[L(Z)].

Hence

sup
I⊂Rd , |I|<∞

lim inf
k→∞

max
u∈I
EQk,u[φ(

√
k(Tk − Γk(u)))] = E[L(Z)],

thereby demonstrating equality in (5.7.3) whenever L is bounded and continuous.

7.2.13 Proofs of Theorems 5.7.5 and 5.7.5

The proofs of these two theorems are identical to the proof of Theorem 5.7.4.

7.2.14 Auxiliary facts about sequences of random variables.

Definition 7.2.11. Let {Xk}k≥1 and X be random vectors in Rd defined on a probability

space (Ω,F , P).

1. Xk converges almost surely to X, denoted Xk
a.s.
−−→ X if for almost every ω ∈ Ω, the

vector Xk(ω) converges to X(ω).

2. Xk converges in probability to X, denoted Xk
p
−→ X, if for every ϵ > 0, we have

limk→∞ P(∥Xk − X∥ ≤ ϵ)→ 1.
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3. Xk converges in distribution to X, denoted Xk
D
−→ X if for every bounded continu-

ous function G : Rd → R, one has limk→∞ EG(xk) = EG(X).

4. Xk is bounded in probability, denoted Xk = Op(1), if for every ϵ > 0, there exist

Mϵ such that P(∥Xn∥ > Mϵ) < ϵ for all sufficiently large indices k.

Lemma 7.2.12. Let {Xk}k≥1, {Yk}k≥1, X, and Y be random vectors in some Euclidean

space and let a, b be deterministic. The following statements are true.

1. The implications hold:

Xk
a.s.
−−→ X =⇒ Xk

p
−→ X =⇒ Xk

D
−→ X =⇒ Xk = Op(1).

2. If Xk
p
−→ X and Yk

p
−→ Y, then aXk+bYk

p
−→ aX+bY and XkYk

p
−→ XY. The analogous

statement holds for almost sure convergence.

3. If Xn = Op(1) and Yk
p
−→ 0, then XkYk

p
−→ 0.

4. (Slutsky I) If Xk
D
−→ X and Yk

p
−→ a, then Xk + Yk

D
−→ X + a and XkYK

D
−→ aX.

5. (Slutsky II) If Xk
p
−→ X and Yk

p
−→ Y, then Xk + Yk

p
−→ X + Y and XkYK

p
−→ XY.

6. If XkYk
D
−→ X and Yk

p
−→ c, then Xk

D
−→ X/c, as long as c , 0.

7. (Delta Method) Suppose that
√

k(Xk − µ)
d
−→ N(0,Σ) for some µ ∈ Rd and some

matrix Σ ∈ Rd×d, then we have
√

k(g(Xk) − g(µ))
d
−→ N(0,∇g(µ)Σ∇g(µ)⊤) for any

map g : Rd → Rm that is differentiable at µ.

Lemma 7.2.13 (Robbins-Siegmund [146]). Let Ak, Bk,Ck,Dk ≥ 0 be non-negative ran-

dom variables adapted to the filtration {Fk} and satisfying

E[Ak+1 | Fk] ≤ (1 + Bk)Ak +Ck − Dk.

Then on the event {
∑

k Bk < ∞,
∑

k Ck < ∞}, there is a random variable A∞ < ∞ such

that Ak
a.s.
−−→ A∞ and

∑
k Dk < ∞ almost surely.
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Lemma 7.2.14 (Conditional Borel-Cantelli [147]). Let {Xn : n ≥ 1} be a sequence of

nonnegative random variables defined on the probability space (Ω,F ,P) and {Fn : n ≥

0} be a sequence of sub-σ-algebras of F . Let Mn = E [Xn | Fn−1] for n ≥ 1. If {Fn : n ≥

0} is nondecreasing, i.e., it is a filtration, then
∑∞

n=1 Xn < ∞ almost surely on {
∑∞

n=1 Mn <

∞}.

Lemma 7.2.15 ( [148, Exercise 5.3.35]). Let Mk be an L2 martingale adapted to a

filtration {Fk} and let bk ↑ ∞ be a positive deterministic sequence. Then if∑
k≥1

b−2
k E

[
(Mk − Mk−1)2 | Fk−1

]
< +∞,

we have b−1
n Mn

a.s.
−−→ 0.

Lemma 7.2.16 (Kronecker Lemma). Suppose {xk}k is an infinite sequence of real num-

ber such that the sum
∑∞

k=1 xk exists and is finite. Then for any divergent positive nonde-

creasing sequence {bk}, we have

lim
K→∞

1
bK

K∑
k=1

bkxk = 0.

The proofs of the following three lemmas may be found in Section 7.1.7.2.

Lemma 7.2.17. Fix k0 ∈ N, c > 0, and γ ∈ (1/2, 1]. Suppose that {Xk}, {Yk}, and {Zk}

are nonnegative random variables adapted to a filtration {Fk}. Suppose the relationship

holds:

E[Xk+1 | Fk] ≤ (1 − ck−γ)Xk − Yk + Zk for all k ≥ k0.

Assume furthermore that c ≥ 6 if γ = 1. Define the constants ak := k2γ−1

log2(k+1)
. Then

there exists a random variable V < ∞ such that on the event {
∑∞

k=1 ak+1Zk < +∞}, the

following is true:

1. The limit holds

akXk
a.s.
−−→ V.
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2. The sum is finite
∞∑

k=1

ak+1Yk < +∞.

Lemma 7.2.18. Fix k0 ∈ N, c,C > 0, and γ ∈ (1/2, 1]. Suppose that {sk}k is a nonnega-

tive sequence satisfying

sk ≤
c

12γ
and s2

k+1 ≤ s2
k − ck−γsk +Ck−2γ, for all k ≥ k0,

Then, there exists a constant Cub depending only on c,C, γ and k0 such that

sk ≤ Cubk−γ, ∀k ≥ 1.

Lemma 7.2.19. Fix k0 ∈ N, c,C > 0, and γ ∈ (1/2, 1]. Suppose that {sk}k is a nonnega-

tive sequence satisfying

sk+1 ≤ (1 − ck−γ)sk +Ck−2γ, for all k ≥ k0,

Assume furthermore that c ≥ 16 if γ = 1. Then, there exists a constant Cub depending

only on c,C, γ and k0 such that

sk ≤ Cubk−γ, ∀k ≥ 1.

7.2.15 Background on local asymptotic minimax

In this section, we review mostly standard results in asymptotic statistics, primarily fo-

cusing on Hájek-Le Cam minimax theorem. We begin with several standard definitions,

following the classical text [151]. Henceforth, we fix a sequence of parametric statis-

tical models {Qk,u | u ∈ Rd}, where Qk,u is a probability measure on (Ωk,Sk) such that
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Qk,u ≪ Qk,0 for each k ∈ N and u ∈ Rd. We write either Xk
u
{ X or Xk

u
{ D to in-

dicate that a sequence of random vectors Xk : Ωk → R
m converges in distribution to a

random vector X ∼ D with respect to Qk,u, i.e., limk→∞ EQk,u[φ(Xk)] = EX∼D[φ(X)] for

every bounded continuous function φ : Rm → R. Notice that the limiting distribution D

must not depend on u.

Definition 7.2.20 (Local asymptotic normality). The sequence {Qk,u | u ∈ Rd} is lo-

cally asymptotically normal (LAN) with precision V at zero if there exist a sequence

of random vectors Zk : Ωk → R
d and a positive semidefinite matrix V ∈ Rd×d such that

Zk
0
{ N(0,V) and, for each u ∈ Rd,

log
dQk,u

dQk,0
= u⊤Zk −

1
2

u⊤Vu + oQk,0(1). (7.2.29)

Definition 7.2.21 (Regular mapping sequence). A sequence of mappings Γk : Rd → Rn

is regular with derivative Γ̇ at zero if there exists a matrix Γ̇ ∈ Rn×d satisfying

lim
k→∞

√
k(Γk(u) − Γk(0)) = Γ̇u for all u ∈ Rd.

Note that given any function ψ : Rd → Rn that is differentiable at zero, the induced

mapping sequence Γk : Rd → Rn given by Γk(u) = ψ(u/
√

k) is clearly regular with

derivative Γ̇ = ∇ψ(0) at zero. This will be the primary example of a regular mapping

sequence.

Equipped with the preceding definitions, we are ready to state the following version

of the Hájek-Le Cam minimax theorem [151, Theorem 3.11.5].

Theorem 7.2.22 (Local asymptotic minimax bound). Let {Qk,u | u ∈ Rd} be locally

asymptotically normal with precision V at zero, Γk : Rd → Rn be a regular mapping

sequence with derivative Γ̇ at zero, and L : Rn → [0,∞) be symmetric, quasiconvex,

and lower semicontinuous function. Then, for any sequence of estimators Tk : Ωk → R
n,
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we have

sup
I⊂Rd , |I|<∞

lim inf
k→∞

max
u∈I
EQk,u[L(

√
k(Tk − Γk(u)))] ≥ E[L(Z)], (7.2.30)

where Z ∼ N(0, Γ̇(V + λI)−1Γ̇⊤) for any λ > 0; if V is invertible, then (7.2.30) also holds

with Z ∼ N(0, Γ̇V−1Γ̇⊤).

Next, we’ll need the following lemma that provides sufficient conditions for estab-

lishing a kind of uniform asymptotic normality of a statistical estimator. This is a small

modification of [18, Lemma 8.14]. For the sake of completeness, we repeat here a short

proof as it appears in [91, Proof of Lemma 5.15].

Theorem 7.2.23 (Asymptotic equivariance). Fix a sequence of estimators Tk : Ωk → R
n,

a sequence of parametric statistical models {Qk,u | u ∈ Rd}, and a regular mapping

sequence Γk with derivative Γ̇ at zero. Suppose that there exists a sequence of random

vectors Zk : Ωk → R
d with Zk

0
{ N(0,V), a positive semidefinite matrix V ∈ Rd×d, a

matrix W, and a vector x⋆ ∈ Rn such that the following expansions hold:

(LAN) log
dQk,u

dQk,0
= u⊤Zk −

1
2

u⊤Vu + oQk,0(1) ∀u ∈ Rd,

(Normality for Qk,0)
√

k(Tk − Γk(0)) = WZk + oQk,0(1).

Then Tk are asymptotically equivariant-in-law with respect to {Qk,u | u ∈ Rd} for estimat-

ing x⋆, that is

√
k(Tk − Γk(u))

u
{ N((WV − Γ̇)u,WVW⊤) ∀u ∈ Rd. (7.2.31)

Proof. Let Z̄ ∼ N(0,Σ), fix u ∈ Rd, and consider the affine map

φ(z) :=

W

u⊤

z +
 0

−1
2u⊤Vu

.
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Then clearly φ(Zk)
0
{ φ(Z̄) and hence the continuous mapping theorem [18, see Theo-

rems 2.3 and 2.7] implies
√

k(Tk − Γk(0))

log dQk,u

dQk,0

 0
{

 WZ̄

u⊤Z̄ − 1
2u⊤Vu

 ∼ N
( 0

−1
2u⊤Vu

,
WVW−⊤ WVu

u⊤VW−⊤ u⊤Vu


)
.

Applying Le Cam’s Third Lemma [18, Example 6.7], we thus conclude

√
k(Tk − Γk(0))

u
{ N(WVu,WVW⊤). (7.2.32)

On the other hand, taking into account that Γk is a regular mapping sequence with deriva-

tive Γ̇ at zero, we deduce
√

k(Γk(u) − Γk(0)) → Γ̇u as k → ∞. Combining this with

(7.2.32) therefore yields (7.2.31), as claimed. □

7.3 Proofs for Normal Tangent Descent (NTD)

7.3.1 Proof of Lemma 6.2.2

Let g denote the minimal norm element of ∂σ f (x). Write g as a convex combination of

subgradients: g =
∑n

i=1 λigi where
∑n

i=1 λi = 1 and gi ∈ ∂ f (xi) for some xi ∈ Bσ(x) and

n > 0. Then

f (x) ≤ f

 n∑
i=1

λixi +

n∑
i=1

λi(x − xi)


≤

n∑
i=1

λi f (xi) + Lσ

≤ f (y) +
n∑

i=1

⟨λigi, xi − y⟩ + Lσ

≤ f (y) + ⟨g, x − y⟩ +
n∑

i=1

λi ⟨gi, xi − x⟩ + Lσ

≤ f (y) + dist(0, ∂σ f (x))∥x − y∥ + 2Lσ,
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as desired.

7.3.2 Proof of Proposition 6.3.5

We begin with preliminary notation and bounds. First, sinceM is C4 smooth, the pro-

jection PM is C3 smooth near x̄. Second, since f is C3 smooth along M near x̄, the

composition fM := f ◦ PM is also C3 smooth near x̄. Third, the constant µ is positive

due to the active manifold assumption. Fourth, choose δ > 0 small enough that the

following hold:

1. ∇PM is CM-Lipschitz on Bδ(x̄);

2. ∇ fM is β-Lipschitz on Bδ(x̄);

3. ∇2 fM is ρ-Lipschitz on Bδ(x̄) in the operator norm, where ρ := 2lipop
∇2 fM

(x̄);

4. f is L-Lipschitz on Bδ(x̄);

5. the quadratic growth bound (Q1) holds:

f (x) − f (x̄) ≥
γ

2
∥x − x̄∥2 for all x ∈ Bδ(x̄);

6. the strong (a) bound (Q3) holds:

∥PTM(y)(v − ∇M f (y))∥ ≤ C(a)∥x − y∥ (7.3.1)

for all x ∈ Bδ(x̄), v ∈ ∂ f (x), and y ∈ M ∩ Bδ(x̄).

7. the (b≤) regularity bound (Q4) holds:

f (x′) ≥ f (x) + ⟨v, x′ − x⟩ −
µ

2
∥x − x̂∥ (7.3.2)

for all x ∈ Bδ(x̄), v ∈ ∂ f (x), and x′ ∈ Bδ(x̄) ∩M.
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8. the sharpness condition holds:

dist(0, ∂ f (x)) > 2µ for all x ∈ Bδ(x̄)\M.

Given these bounds, let us define

δA :=
1
2

min
{
δ,

9γ
16ρ

,
µ

2(C(a) + 2β + 2CML)

}
.

For this choice of δA, Item 1 holds automatically. We now prove the remaining items.

7.3.2.1 Item 2: Smoothness of PM.

Fix x′ ∈ B2δA(x̄) and x ∈ BδA(x). Observe that PM(x) ∈ B2δA(x̄) and we have the inclusion

x − PM(x) ∈ NM(PM(x)). Consequently, we have

1. PTM(PM(x))(x) = PTM(PM(x))(PM(x));

2. PM(x) = PM(PM(x));

3. ∇PM(PM(x)) = PTM(PM(x)).

Therefore, we have

∥PM(x′) − PM(x) − PTM(PM(x))(x′ − x)∥

= ∥PM(x′) − PM(PM(x)) − ∇PM(PM(x))(x′ − PM(x))∥

≤
CM
2
∥x′ − PM(x)∥2

≤ CM(∥x′ − x∥2 + dist2(x,M)),

where the first inequality follows from Lipschitz continuity of ∇PM on B2δA(x̄) ⊆ Bδ(x̄).
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7.3.2.2 Item 3: Bounds on ∇M f

Recall that PM(x) ∈ B2δA(x̄) whenever x ∈ BδA(x̄). Thus, below, we prove that

γ

2
∥y − x̄∥ ≤ ∥∇ fM(y)∥ ≤ β∥y − x̄∥ for all y ∈ B2δA(x̄) ∩M.

This is equivalent to the claimed bound since ∇ fM(y) = ∇M f (y) for all y ∈ B2δA(x̄)∩M.

Let us first prove the claimed upper bound. Due to the inequality,

fM(x) − fM(x̄) ≥
γ

2
∥PM(x) − x̄∥2 for all x ∈ Bδ(x̄),

it follows that x̄ is a local minimizer of fM. Consequently, ∇ fM(x̄) = 0. Thus, since β is

a local Lipschitz constant of ∇ fM on Bδ(x̄), we have

∥∇ fM(y)∥ ≤ β∥y − x̄∥ for all y ∈ Bδ(x̄) ∩M.

Since 2δA ≤ δ, this proves the claimed upper bound.

Next, we prove the claimed lower bound. It suffices to establish the following con-

vexity inequality:

fM(y) + ⟨∇ fM(y), x̄ − y⟩ ≤ fM(x̄) for all y ∈ B2δA(x̄) ∩M. (7.3.3)

Indeed, if this inequality holds, we have

⟨∇ fM(y), y − x̄⟩ ≥ fM(y) − fM(x̄) ≥
γ

2
∥y − x̄∥2 for all y ∈ B2δA(x̄) ∩M,

and the desired result follows from Cauchy-Schwarz.

To that end, observe that since ∇ fM(x̄) = 0 and ∇2 fM is ρ-Lipschitz in B2δA(x̄), we

have

fM(y) ≤ fM(x̄) +
1
2

〈
∇2 fM(x̄)(y − x̄), y − x̄

〉
+
ρ

6
∥y − x̄∥3 for all y ∈ B2δA(x̄).

273



Consequently, we have the lower bound on the quadratic form: for all y ∈ B2δA(x̄) ∩M,

we have

1
2

〈
∇2 fM(x̄)(y − x̄), (y − x̄)

〉
≥ fM(y) − fM(x̄) −

ρ

6
∥y − x̄∥3

≥
γ

2
∥y − x̄∥2 −

ρ

6
∥y − x̄∥3

≥
3γ
8
∥y − x̄∥2, (7.3.4)

where the second inequality follows from the quadratic growth bound and the third

follows from the bound ∥y− x̄∥ ≤ 2δA ≤
3γ
4ρ . Therefore, for all y ∈ M∩ B2δA(x̄), we have

fM(x̄) ≥ fM(y) + ⟨∇ fM(y), x̄ − y⟩ +
1
2

〈
∇2 fM(y)(x̄ − y), (x̄ − y)

〉
−
ρ

6
∥y − x̄∥3

≥ fM(y) + ⟨∇ fM(y), x̄ − y⟩ +
1
2

〈
∇2 fM(x̄)(x̄ − y), (x̄ − y)

〉
−

2ρ
3
∥y − x̄∥3

≥ fM(y) + ⟨∇ fM(y), x̄ − y⟩ +
3γ
8
∥y − x̄∥2 −

2ρ
3
∥y − x̄∥3

≥ fM(y) + ⟨∇ fM(y), x̄ − y⟩ ,

where the first and second inequalities follow by Lipschitz continuity of ∇2 fM; the

third inequality follows from (7.3.4); and the fourth inequality follows from the bound

∥y − x̄∥ ≤ 2δA ≤
9γ
16ρ . This completes the proof.

7.3.2.3 Item 4: Consequences of strong (a)-regularity

Fix x ∈ BδA(x̄) and σ ≤ δA. Recall that y := PM(x) ∈ B2δA(x̄) since x ∈ BδA(x̄). Fix

g ∈ ∂σ f (x). By definition of ∂σ f (x), there exists a family of coefficients λi ∈ [0, 1],

points xi ∈ Bσ(x) ⊆ Bδ(x̄), and subgradients gi ∈ ∂ f (xi) indexed by a finite set i ∈ I such

that
∑

i∈I λi = 1 and g =
∑

i∈I λigi. Therefore, by averaging the strong (a) bound (7.3.1)

over gi, we find that

∥PTM(y)(g − ∇M f (y))∥ ≤
∑
i∈I

λi∥PTM(y)(gi − ∇M f (y))∥
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≤
∑
i∈I

λiC(a)∥xi − y∥.

≤ C(a)(dist(x,M) + σ).

Since g was arbitrary, it follows that for all x ∈ BδA(x̄) and σ ≤ δA, we have

sup
g∈∂σ f (x)

∥PTM(y)(g − ∇M f (y))∥ ≤ C(a)(dist(x,M) + σ). (7.3.5)

Now, we apply this bound to establish the two remaining inequalities.

Indeed, first observe that for all x ∈ BδA(x̄) and σ ≤ δA, we have

sup
g∈∂σ f (x)

∥PTM(y)g∥ ≤ ∥∇M f (y)∥ +C(a)(dist(x,M) + σ) ≤ β∥y − x̄∥ +C(a)(dist(x,M) + σ),

where the first inequality follows from (7.3.5) and the second inequality follows from

Item 3. This proves the first claimed bound. Second, observe that for all x ∈ BδA(x̄) and

σ ≤ δA, we have

sup
g,g′∈∂σ f (x)

∥PTM(y)(g − g′)∥ ≤ sup
g∈∂σ f (x)

∥PTM(y)(g − ∇M f (y))∥ + sup
g′∈∂σ f (x)

∥PTM(y)(g′ − ∇M f (y))∥

≤ 2C(a)(dist(x,M) + σ).

where the second inequality follows from (7.3.5). This completes the proof.

7.3.2.4 Item 5: Aiming inequality

Consider a point x ∈ BδA(x̄), let κ = 2µ, and define

x̂ ∈ argmin
x′∈B2δA (x̄)

{ f (x′) + κ∥x′ − x∥} .

We claim that x̂ ∈ M∩B2δA(x̄). Indeed, first note that by definition of x̂ and the inclusion

x̂ ∈ B2δA(x̄), we have

∥x̂ − x∥ ≤
f (x̄) − f (x̂)

κ
+ ∥x̄ − x∥ ≤ ∥x̄ − x∥ < δA,
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where the second inequality follows since x̄ is a minimizer of f on B2δA(x̄), a conse-

quence of quadratic growth. Thus, by the triangle inequality, we have x̂ ∈ B2δA(x̄). By

Fermat’s rule, we, therefore, have the inclusion:

0 ∈ ∂( f + κ∥ · −x∥)(x̂) ⊆ ∂ f (x̂) + κB.

If x̂ <M, then dist(0, ∂ f (x̂)) > κ, contradicting the above inclusion. Therefore, we have

x̂ ∈ M ∩ B2δA(x̄).

Turning to the aiming inequality, apply the (b≤)-regularity bound (7.3.2) to x̂:

f (x̂) ≥ f (x) + ⟨v, x̂ − x⟩ − ε∥x − x̂∥ ≥ f (x̂) + ⟨v, x̂ − x⟩ + (κ − ε)∥x − x̂∥,

where we define ε := µ/2. Consequently, we have

⟨v, x − PM(x)⟩ ≥ (κ − ε)∥x − x̂∥ + ⟨v, x̂ − PM(x)⟩ for all v ∈ ∂ f (x). (7.3.6)

We now bound the term ⟨v, x̂ − PM(x)⟩: By the conclusion of Item 2, we have

∥PM(x̂) − PM(x) − PTM(PM(x))(x̂ − x)∥ ≤ CM(∥x − x̂∥2 + dist2(x,M)) ≤ 2CM∥x − x̂∥2,

where the second inequality follows since x̂ ∈ M. Thus, we have

| ⟨v, x̂ − PM(x)⟩ | ≤ | ⟨v, PTM(PM(x))(x̂ − x)⟩ | + 2CM∥v∥∥x − x̂∥2

≤ ∥PTM(PM(x))v∥∥x̂ − x∥ + 2CML∥x − x̂∥2

≤ (C(a)dist(x,M) + β∥PM(x) − x̄∥)∥x̂ − x∥ + 2CML∥x − x̂∥2

≤ (C(a)δA + 2βδA + 2CMLδA)∥x̂ − x∥

≤ ε∥x̂ − x∥.

where the second inequality follows from Item 4 and the third inequality follows from

the inclusion PM(x) ∈ B2δA(x̄). Therefore, plugging this bound into (7.3.6), we arrive at

⟨v, x − PM(x)⟩ ≥ (κ − 2ε)∥x − x̂∥ ≥ µdist(x,M),

as desired.
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7.3.2.5 Item 6: Bounding subgradients

Fix x ∈ BδA(x̄), σ ≤ δA, and g ∈ ∂σ f (x). By definition of ∂σ f (x), there exists a family of

coefficients λi ∈ [0, 1], points xi ∈ Bσ(x) ⊆ Bδ(x̄), and subgradients gi ∈ ∂ f (xi) indexed

by a finite set i ∈ I such that
∑

i∈I λi = 1 and g =
∑

i∈I λigi. Recall that by Lipschitz

continuity of f on Bδ(x̄), we have ∥gi∥ ≤ L for i ∈ I. Therefore,

∥g∥ ≤
∑
i∈I

λi∥gi∥ ≤ L,

as desired.

7.3.2.6 Item 7: Bounding the function gap

Fix a point x ∈ BδA(x̄) and recall that PM(x) ∈ B2δA(x̄). Then by Lipschitz continuity of

f on Bδ(x̄), we have

f (x) − f (PM(x̄)) ≤ Ldist(x,M).

Next, arguing as in the proof of Item 3, we find that ∇ fM(x̄) = 0. Thus, since ∇ fM is

β-Lipschitz on Bδ(x̄), we have

f (PM(x))− f (x̄) = fM(PM(x))− f (x̄) ≤ ⟨∇ fM(x̄), PM(x) − x̄⟩+
β

2
∥PM(x)−x̄∥2 =

β

2
∥PM(x)−x̄∥2.

By putting both bounds together, we have

f (x) − f (x̄) = f (x) − f (PM(x)) + f (PM(x)) − f (x̄) ≤ Ldist(x,M) +
β

2
∥PM(x) − x̄∥2,

as desired.

7.3.3 Proof of Corollary 6.2.5
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We begin with the following known Lemma, which immediately follows from [106,

Proposition 2.8]

Lemma 7.3.1. Let f : Rd → R be a locally Lipschitz function. Suppose that there exists

sequences xk → x̄, τk → 0, and gk ∈ ∂τk f (xk) with ∥gk∥ → 0. Then x̄ is a Clarke critical

point.

Now we turn to the proof of the Corollary. Since f has bounded initial sublevel set,

the following widened sublevel set is bounded:

S := {x + u : f (x) ≤ f (x0) and u ∈ B(x)}.

Thus, there exists L > 0 such that f is L-Lipschitz on S . In addition, ∂ f is uniformly

bounded by L on int S .

We begin with a claim.

Claim: Fix i > 0 and define τi := 2−i. Let sk := max{∥gk∥, c0∥g0∥} be the trust region

parameter used in Algorithm 3 and define ϵi,k :=
√

128Lτi. Then, with probability one,

the event

E(i)
k =

{
dist(0, ∂τi f (xk)) > ϵi,k and f (xk+1) > f (xk) −

τidist(0, ∂τi f (xk))
8

}
cannot happen infinitely often, i.e.,

P
(
∩∞T=1 ∪

∞
k=T E(i)

k

)
= 0.

Proof: We prove that P(E(i)
k ) is summable in k. Indeed, first, note that P(E(i)

k ) = 0 when

P(dist(0, ∂τi f (xk)) > ϵi,k) = 0. On the other hand, suppose P(dist(0, ∂τi f (xk)) > ϵi,k) > 0.

Now we upper bound P(E(i)
k ) for all Gk satisfying Gk ≥ i. For such G := Gk, the

radius τi = σG−i is among those considered in Algorithm 3. Moreover, since sk ≤ L
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(recall xk ∈ int(S )), the radius satisfies the trust region constraint: σG−i = τi ≤ ϵi,k/sk ≤

dist(0, ∂σG−i f (x))/sk. Therefore, if NDescent terminates with descent at the (G − i)-th

level in Algorithm 3, it follows that

f (xk+1) > f (xk) −
τidist(0, ∂τi f (xk))

8
.

We estimate the probability of this success with Lemma 6.2.3: there exist C > 0 de-

pending on ϵi,k and for all k ≥ i, we have

P(E(i)
k ) ≤ P

(
f (xk+1) > f (xk) −

τidist(0, ∂τi f (xk))
8

∣∣∣∣∣dist(0, ∂τi f (xk)) > ϵi,k

)
≤ exp(−Ck).

Therefore, P(E(i)
k ) is summable in k. The result then follows from Borel–Cantelli lemma.

■

By the claim and a union bound, we know that with probability one, for any fixed i,

E(i)
k cannot happen infinitely often. Now, suppose that a subsequence {xkl} (where kl ≥ l

is strictly increasing in l) converges to a point x̄. We note that the sequence { f (xk)} is

bounded below: Indeed, since xkl converges and f is continuous, it follows { f (xkl)} is

bounded below by a constant c ∈ R. Consequently, since { f (xk))} is nonincreasing and

kl ≥ l, it follows that c ≤ f (xkl) ≤ f (xl) and for every l > 0, as desired. As a result, the

following inequalities cannot be valid simultaneously infinitely often:

dist(0, ∂τi f (xkl)) > ϵi,k and f (xkl+1) ≤ f (xkl) −
τidist(0, ∂τi f (xkl))

8
.

Therefore, dist(0, ∂τi f (xkl)) > ϵi,k cannot happen infinitely often. Consequently, we can

find a sequence of increasing indices ji such that

dist(0, ∂τi f (x ji)) ≤ ϵi,k and x ji → x̄.

Since ϵi,k → 0 as k → ∞, Lemma 7.3.1, shows that x̄ is Clarke critical.
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7.3.4 Proof of Lemma 6.5.7

We begin with preliminary notation and bounds. We fix x ∈ BδGrid(x̄) and subgradient

g ∈ ∂σ f (x)\{0}. We define y := PM(x), T := TM(y), and N := NM(y). We have the

following two bounds: First, we have

(µ + L)CM(D1dist(x,M) + σ) ≤ (µ + L)CMδGrid(D1 + 1) =
µ

8
CM(D−1

1 + 1)δGrid ≤
µ

8
.

(7.3.7)

Second, we have

C(a)(dist(x,M) + σ) + β∥y − x̄∥ ≤ 2C(a)δGrid + 2βδGrid ≤
µ

4
. (7.3.8)

We now turn to the proof.

By Lemma 6.5.3 (which is applicable since x ∈ BδA/2(x̄) and σ ≤ δGrid ≤ δA/2), we

have〈
ĝ, σ

PNg
∥g∥

〉
≤ −σµ

∥PNg∥
∥g∥

+ (µ + L)dist(x,M) + (µ + L)CM(dist2(x,M) + σ2).

Rearranging, we find that

⟨PN ĝ, g⟩ ≤ −µ∥PNg∥ +
(µ + L)∥g∥dist(x,M)

σ
+

(µ + L)∥g∥CM(dist2(x,M) + σ2)
σ

≤ −µ∥PNg∥ +
µ

8
∥g∥ + (µ + L)CM(D1dist(x,M) + σ) · ∥g∥

≤ −µ∥PNg∥ +
µ

4
∥g∥,

where the second inequality follows from the assumption D−1
1 dist(x,M) ≤ σ and the

third follows from (7.3.7). Now observe that

⟨PT ĝ, g⟩ ≤ ∥PT ĝ∥∥g∥ ≤ (C(a)(dist(x,M) + σ) + β∥y − x̄∥) · ∥g∥ ≤
µ

4
∥g∥,

where second inequality follows from (6.3.4) and the third inequality follows

from (7.3.8). Therefore,

⟨ĝ, g⟩ = ⟨PN ĝ, g⟩ + ⟨PT ĝ, g⟩ ≤ −µ∥PNg∥ +
µ

2
∥g∥ ≤ −

µ

2
∥g∥ + µ∥PT (g)∥,
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as desired.

7.3.5 Proof of µ ≤ L

Lemma 7.3.2. We have that µ ≤ L.

Proof. Indeed,

µ =
1
4

lim inf
x′
Mc
→ x̄

dist(0, ∂ f (x)) ≤ lim sup
x→x̄

dist(0, ∂ f (x)) ≤ L,

by Proposition 6.3.5. □

7.3.6 Proof of Lemma 6.6.4

We fix a > 0. Note that the claimed inclusion is a consequence of the following bound:

f (x) − f (x̄) ≥
γ

2
min{δA, ∥x − x̄∥}∥x − x̄∥ for all x ∈ Rd. (7.3.9)

Here, we provide a proof for completeness.

To that end, we remind the reader that Assumption Q is in force. Consequently, by

Item 1 of Proposition 6.3.5, we have:

f (x) − f (x̄) ≥
γ

2
∥x − x̄∥2 for all x ∈ BδA(x̄).

Thus, if x ∈ BδA(x̄), bound (7.3.9) is immediate. On the other hand, suppose that we

have x ∈ Rd\BδA(x̄). Define the curve xt : t 7→ (1 − t)x + tx̄. Choose t0 ∈ [0, 1] such that

xt0 ∈ bdry BδA(x̄). Then, by Jensen’s inequality, we have

(1−t0) f (x) ≥ f (xt0)−t0 f (x̄) ≥ (1−t0) f (x̄)+
γ

2
∥xt0−x̄∥2 = (1−t0) f (x̄)+

γ(1 − t0)
2

∥x−x̄∥∥xt0−x̄∥.
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Consequently, since ∥xt0 − x̄∥ = δA, we have

f (x) − f (x̄) ≥
γδA

2
∥x − x̄∥ ≥

γ

2
min{δA, ∥x − x̄∥}∥x − x̄∥,

as desired. This completes the proof.

7.3.7 Proof of (6.6.18)

Let us expand the left-hand-side of (6.6.18):

16L′
√

2 log(2K2
1/p)

K1/2
1

≤

16DL′
√

2 log(K2
1)

K1/2
1︸                  ︷︷                  ︸
=:A

+
16DL′

√
2 log(2/p)

K1/2
1︸                   ︷︷                   ︸
=:B

.

Note that B ≤ a/4 by definition of K1. Consequently, the proof will follow if A ≤ a/4.

To that end, for any α ∈ (0, 1), we have

A =
16DL′

√
2 log(K2

1)

K1/2
1

=
16DL′

√
2 log(K2α

1 )/α

K1/2
1

≤
16DL′

√
2/α

K(1−α)/2
1

,

Therefore, we have A ≤ a/4 whenever

K1 ≥ inf
α∈(0,1)

(
64DL′

√
2
α

) 2
(1−α)

a
2

(1−α)

=
D2

a2 inf
α∈(0,1)

(
64L′

√
2
α

) 2
(1−α)

( a
D )

2α
(1−α)

=
D2

a2 b.

This lower bound holds by definition of K1. Consequently, A ≤ a/4. Therefore, the

proof is complete.

7.3.8 Proof of Lemma 6.6.6

Throughout this section, we use the symbol a ≲ b to mean that a ≤ ηb for a fixed

numerical constant η independent of f . In addition, we use the bound on the condition

number: κ ≥ 1, since µ ≤ L; see Lemma 7.3.5.
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Turning to the bound, we wish to upper bound q.

q = max

ρ,
√

1 −
3µ2

256L2 ,
1
2

 .
First note that

1 −

√
1 −

3µ2

256L2 ≳
µ2

L2 ≥
1
κ2 .

Next, we upper bound ρ. To that end, we must bound the constants a1 and a2, which

rely on the somewhat involved constants C4 and C5. Thus, we first lower bound C4:

C4 = min
{

β

C(a)(1 + δA)
,

min {µ/δA,C3D2/β}

4(1 + (1 + δA)CM)(µ + L))
,

1
2

}
≳ min

{
β

C(a)
,

µ

L(1 +CM)
,

γ2µ

L2β(1 +CM)

}
≥

1
κ3(1 +CM)

,

where we use the bounds µ ≤ L, C3 ≳ γ
2/L, and D2 ≳ µ. Turning to C5, we have:

C5 = min
{

β

2C(a)
,

C3D2

32C(a)β
,C4,

C2

4

}
≳ min

{
β

C(a)
,
γ2µ

LC(a)β
,

1
κ3(1 +CM)

,
γ

C(a)

}
≥

1
κ3(1 +CM)

,

where we again use C3 ≳ γ
2/L, and D2 ≳ µ. Therefore, we have the lower bound for a2:

a2 =
min {C1/L,C5}

2
≳ min

{
γ2

L2 ,
1

κ3(1 +CM)

}
≳

1
κ3(1 +CM)

.

In addition, we have the upper bound:

a2 =
min {C1/L,C5}

2
≤ C4/2 ≤ 1/4.

Finally to lower bound a1, we have

a1 = min{D1,D2/L} ≳ min
{
µ

L
,
γ

L

}
≳

1
κ
,

where we use the bound D1 ≳ µ/L and D2/L ≳ µ/L.
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Now we upper bound ρ by providing a lower bound on 1 − ρ.

1 − ρ =
1
8

min
{

γa2

8 max{4La2
2, β}

,
µa1

4 max{2L, β/a2
2}

}
≳ min

{
γ

La2
,
γa2

β
,
µa1

L
,
µa1a2

2

β

}
≳ min

{
γ

L
,

γ

κ3(1 +CM)β
,
µ

κL
,

µ

βκ7(1 +CM)2

}
≳

1
κ8(1 +CM)2

Putting all these bounds together, we find that:

1 − q ≳ min
{ 1
κ8(1 +CM)2 ,

1
κ2

}
≥

1
κ8(1 +CM)2 ,

as desired.
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[103] W. d. Oliveira and C. Sagastizábal, “Bundle methods in the xxist century: A
bird’s-eye view,” Pesquisa Operacional, vol. 34, pp. 647–670, 2014.

[104] X. Han and A. S. Lewis, “Survey descent: A multipoint generalization of gradient
descent for nonsmooth optimization,” arXiv preprint arXiv:2111.15645, 2021.

[105] A. Nemirovsky and D. Yudin, Problem complexity and method efficiency in opti-
mization. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York,
1983. Translated from the Russian and with a preface by E. R. Dawson, Wiley-
Interscience Series in Discrete Mathematics.

[106] A. Goldstein, “Optimization of lipschitz continuous functions,” Mathematical
Programming, vol. 13, no. 1, pp. 14–22, 1977.

[107] J. Zhang, H. Lin, S. Jegelka, S. Sra, and A. Jadbabaie, “Complexity of finding
stationary points of nonconvex nonsmooth functions,” Proceedings of Machine
Learning Research, pp. 11173–11182, 2020.

[108] D. Davis, D. Drusvyatskiy, Y. T. Lee, S. Padmanabhan, and G. Ye, “A gradi-
ent sampling method with complexity guarantees for general lipschitz functions,”
arXiv preprint arXiv:2112.06969, 2022.

[109] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, “Proximal alternating mini-
mization and projection methods for nonconvex problems: An approach based
on the Kurdyka-Łojasiewicz inequality,” Mathematics of operations research,
vol. 35, no. 2, pp. 438–457, 2010.

293



[110] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent methods for
semi-algebraic and tame problems: proximal algorithms, forward–backward
splitting, and regularized gauss–seidel methods,” Mathematical Programming,
vol. 137, no. 1, pp. 91–129, 2013.

[111] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized mini-
mization for nonconvex and nonsmooth problems,” Mathematical Programming,
vol. 146, no. 1, pp. 459–494, 2014.

[112] Y. Xu and W. Yin, “A block coordinate descent method for regularized multicon-
vex optimization with applications to nonnegative tensor factorization and com-
pletion,” SIAM Journal on imaging sciences, vol. 6, no. 3, pp. 1758–1789, 2013.

[113] H. Attouch and J. Bolte, “On the convergence of the proximal algorithm for
nonsmooth functions involving analytic features,” Mathematical Programming,
vol. 116, pp. 5–16, 2009.

[114] J. Bolte, A. Daniilidis, and A. Lewis, “The Łojasiewicz inequality for nonsmooth
subanalytic functions with applications to subgradient dynamical systems,” SIAM
J. Optim., vol. 17, no. 4, pp. 1205–1223 (electronic), 2006.

[115] D. Davis, D. Drusvyatskiy, S. Kakade, and J. D. Lee, “Stochastic subgradient
method converges on tame functions,” Foundations of computational mathemat-
ics, vol. 20, no. 1, pp. 119–154, 2020.

[116] D. Davis, D. Drusvyatskiy, K. J. MacPhee, and C. Paquette, “Subgradient meth-
ods for sharp weakly convex functions,” Journal of Optimization Theory and Ap-
plications, vol. 179, pp. 962–982, 2018.

[117] P. R. Johnstone and P. Moulin, “Faster subgradient methods for functions with
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